1 курс Химия Лечебное дело на английском
1. The kinetic energy of a moving electron is 4.55 * 10 -25 J. Calculate its wavelength.
   A. 725 nm;
   B. 800 nm;
   C. 450 nm;
   D. 1050 nm.
2. Isotopes have:
   A. equal number of electrons, but different number of protons;
   B. equal number of electrons, but different number of neutrons;
   C. equal number of protons, but different number of electrons;
   D. equal number of neutrons, but different number of protons.
3. Atom is:
   A. the least chemically indivisible particle of a substance;
   B. the least particle of a substance, which possesses all the physical properties of the substance;
   C. the least particle of a substance, which possesses all the chemical properties of the substance;
   D. an elementary particle.
4. Molecule is:
   A. the least, chemically indivisible particle of a substance;
   B. the least particle of a substance, which possesses all the physical properties of the substance;
   C. the least particle of a substance, which possesses all the chemical properties of the substance;
   D. an elementary particle.
5. The Cu atom contains:
   A. 35 protons, 29 electrons, and 35 neutrons;
   B. 64 protons, 35 electrons, and 29 neutrons;
   C. 35 protons, 29 electrons, and 29 neutrons;
   D. 29 protons, 29 electrons, and 35 neutrons.
6. The particle with relative weight and positive charge equal to one is called:
   A. a proton;
   B. a neutron;
   C. an electron;
   D. a nucleon.
7. The particle with relative weight equal to one and neutral charge is called:
   A. a proton;
   B. a neutron;
   C. an electron;
   D. a nucleon.
8. The nucleus is composed of the following particles:
   A. electrons and neutrons;
   B. electrons and protons;
   C. protons and neutrons;
   D. electrons and nucleons.
9. The planet model of the atom was proposed by
   A. Lomonosov;
   B. Dalton;
   C. Mendeleev;
   D. Rutherford.
10. To solve the Schrodinger equation means:
   A. to calculate the wave vector value;
   B. to obtain the wavelength value of an electron in atom;
   C. to calculate the momentum of electron;
   D. to obtain the wave function value of an electron in atom.
11. The s-block element is:
   A. sodium;
   B. chlorine;
   C. copper;
   D. neodymium.
12. The p-block element is:
   A. sodium;
   B. chlorine;
   C. copper;
   D. neodymium.
13. The d-block element is:
   A. sodium;
   B. chlorine;
   C. copper;
   D. neodymium.
14. The f-block element is:
   A. sodium;
   B. chlorine;
   C. copper;
   D. neodymium.
15. The s-block element is:
   A. Se;
   B. Mg;
   C. Hg;
   D. Pm.
16. The p-block element is:
   A. Se;
   B. Mg;
   C. Hg;
   D. Pm.
17. The d-block element is:
   A. Se;
   B. Mg;
   C. Hg;
   D. Pm.
18. The f-block element is:
   A. Se;
   B. Mg;
   C. Hg;
   D. Pm.
19. Valence electrons for Pb are:
   A. 4s2 4p6 4d10 4f14;
   B. 5s2 5p6 5d10;
   C. 5s2 5p2;
   D. 6s2 6p2.
20. The number of valence electrons in the lead atom is:
   A. 1;
   B. 2;
   C. 3;
   D. 4.
21. The valency of Pb in PbO2 is:
   A. I;
   B. II;
   C. III;
   D. IV.
22. The valency of Pb in PbCl2 is:
   A. I;
   B. II;
   C. III;
   D. IV.
23. How many electrons are there in the M-level of Pb?
   A. 2;
   B. 8;
   C. 18;
   D. 32.
24. How many electrons are there in the N-level of Pb?
   A. 2;
   B. 8;
   C. 18;
   D. 32.
25. What is the charge number of Pb?
   A. 207;
   B. 82;
   C. 125;
   D. +2.
26. Covalent bond in:
   A. H2;
   B. NaCl;
   C. Cu;
   D. FeS.
27. Ionic bond in:
   A. H2;
   B. NaCl;
   C. Cu;
   D. H2O.
28. Hydrogen bonding is realized in:
   A. H2;
   B. NaCl;
   C. Cu;
   D. H2O.
29. Hydrogen bonding is realized in:
   A. H2;
   B. NaCl;
   C. DNA;
   D. FeS.
30. Dative bond is realized in:
   A. NaCl;
   B. NH3;
   C. coordination compounds;
   D. DNA.
31. Macroelement is:
   A. H;
   B. Fe;
   C. Se;
   D. Au.
32. Microelement (trace element) is:
   A. H;
   B. Fe;
   C. Cl;
   D. Au.
33. Microelement (trace element) is:
   A. H;
   B. Zn;
   C. Cl;
   D. Au.
34. Macroelement is:
   A. Cu;
   B. Fe;
   C. Cl;
   D. Au.
35. Ultra-microelement is:
   A. H;
   B. Fe;
   C. Cl;
   D. Au.
36. The number of elements which are proved to be essential in biochemical reactions:
   A. 85;
   B. 15;
   C. 104;
   D. 27.
37. The presence of excessive iron in the blood is:
   A. Hypoferremia;
   B. Hypersideraemia;
   C. Wilson’s Disease;
   D. Derbyshire neck.
38. Abnormal deficiency of iron in the blood is called:
   A. Hypersideraemia;
   B. Hypoferremia;
   C. Hyperferricemia;
   D. Hyperferremia.
39. The deficiency in selenium in the grass leads to:
   A. white muscle disease;
   B. Hypersideraemia;
   C. Wilson’s Disease;
   D. Derbyshire neck.
40. Potassium is contained in large amounts in:
   A. milk;
   B. oysters;
   C. bananas;
   D. poultary.
41. 40. Zinc is contained in large amounts in:
   A. milk;
   B. oysters;
   C. bananas;
   D. natural water.
42. The adult body contains … mg of copper per kilogramme of body weight:
   A. 5.0-6.5;
   B. 10-15;
   C. 0.3-0.5;
   D. 1.4-2.1.
43. An adult man absorbs about … mg of iron a day
   A. 1;
   B. 3;
   C. 5;
   D. 10.
44. The adult daily requirement of Mg is about … g:
   A. 0.3
   B. 1.0
   C. 3.0
   D. 5.3
45. The adult daily requirement of Ca is about … g:
   A. 0.3
   B. 1.0
   C. 3.0
   D. 5.3
46. The valence electrons of Cu are:
   A. 3d9 4s2;
   B. 3d10 4s1;
   C. 4s2;
   D. 4s1.
47. What orbitals overlap in the hydrogen molecule?
   A. s and p;
   B. d and d;
   C. p and p;
   D. s and s.
48. The polar covalent bond in:
   A. CF4;
   B. Cl2;
   C. NaCl;
   D. C(diamond).
49. The bond between water molecules is:
   A. ionic;
   B. hydrogen;
   C. polar covalent;
   D. non-polar covalent bond.
50. The chemicals bonds which do not occur practically in biological systems:
   A. metallic bonds;
   B. hydrogen bonding;
   C. covalent bonds;
   D. ionic bonds.
51. The coordination compound is:
   A. [Ag(NH3)2]Cl;
   B. AgI;
   C. CuCl2;
   D. HCOOK.
52. The color of Cu(NH3)4 is:
   A. colorless;
   B. dark blue;
   C. yellowish;
   D. green.
53. The colour of [Ag(NH3)2]Cl solution is:
   A. colorless;
   B. dark blue;
   C. yellowish;
   D. green.
54. The sum of coefficients in the short form of the ionic equation for the reaction between CuSO4 and NH4OH to obtain the coordination compound is:
   A. 10;
   B. 12;
   C. 5;
   D. 6.
55. The sum of stoichiometric coefficients in the ionic equation for the reaction between CuSO4 and NH4OH to obtain the coordination compound is:
   A. 10;
   B. 12;
   C. 5;
   D. 6.
56. The sum of coefficients in the right part of the molecular equation for the reaction between CuSO4 and NH4OH to obtain the coordination compound is:
   A. 10;
   B. 12;
   C. 5;
   D. 6.
57. The sum of coefficients in the molecular equation for the reaction between CuSO4 and NH4OH to obtain (CuOH)2SO4 is:
   A. 10;
   B. 12;
   C. 5;
   D. 6.
58. The sum of coefficients between AgCl and the ammonia molecule to produce the coordination compound of Ag is:
   A. 5;
   B. 4;
   C. 6;
   D. 3.
59. The sum of coefficients between AgI and potassium iodide to produce the coordination compound of Ag is:
   A. 5;
   B. 4;
   C. 6;
   D. 3.
60. The coordination compound of iron is:
   A. Chlorophyll;
   B. Vitamin B12;
   C. Hemoglobin;
   D. Cysplatin.
61. The coordination compound of magnesium is:
   A. Chlorophyll;
   B. Vitamin B12;
   C. Hemoglobin;
   D. Cysplatin.
62. The coordination compound of Co is:
   A. Chlorophyll;
   B. Vitamin B12;
   C. Hemoglobin;
   D. Cysplatin.
63. Anti-cancerous drug is:
   A. Chlorophyll;
   B. Vitamin B12;
   C. Hemoglobin;
   D. Cysplatin.
64. Coordination number in cysplatin is:
   A. 2;
   B. 3;
   C. 4;
   D. 6.
65. The number of chlorines in cysplatin is:
   A. 1;
   B. 2;
   C. 3;
   D. 4.
66. The atomic weight of the copper atom is:
   A. 29;
   B. 64;
   C. 35;
   D. 63.
67. The charge number of the copper atom is:
   A. 29;
   B. 64;
   C. 35;
   D. 63.
68. The number of neutrons in the copper atom is:
   A. 29;
   B. 64;
   C. 35;
   D. 63.
69. Copper is referred to the:
   A. s-block elements;
   B. p-block elements;
   C. d-block elements;
   D. f-block elements.
70. The number of neutrons in the lead atom is:
   A. 82;
   B. 207;
   C. 125;
   D. 152.
71. Calculate the energy content of a glass of milk.
   A. 50 kcal;
   B. 100 kcal;
   C. 200 kcal;
   D. 300 kcal.
72. Calculate the energy content of 250 g food product containing 10 % of protein and 20 % of carbohydrates.
   A. 50 kcal;
   B. 100 kcal;
   C. 200 kcal;
   D. 300 kcal.
73. An average human being needs about … kcal daily:
   A. 500 kcal;
   B. 1,000 kcal;
   C. 1,200 kcal;
   D. 2,500 kcal.
74. When two gases mix the entropy change is equal to:
   A. R ln W2/W1;
   B. k lnW2/W1;
   C. R lnW1/W2;
   D. k lnW1/W2.
75. Entropy is the most in:
   A. gases;
   B. solids;
   C. liquids;
   D. plastics.
76. Entropy is the least in:
   A. gases;
   B. solids;
   C. liquids;
   D. plastics.
77. What is the energy content of a porridge portion containing 4g of protein, 2 g of fats and 29 g of carbohydrates?
   A. 1550 kJ;
   B. 370 kcal;
   C. 150 kJ;
   D. 630 kJ.
78. What is the energy content of a porridge portion containing 4g of protein, 2 g of fats and 29 g of carbohydrates?
   A. 1550 kJ;
   B. 370 kcal;
   C. 150 kcal;
   D. 630 kcal.
79. What is the energy coefficient of protein?
   A. 4.1 kcal/g;
   B. 9.3 kcal/g
   C. 4.1 kJ/g;
   D. 9.3 kJ/g.
80. What is the energy coefficient of fats?
   A. 4.1 kcal/g;
   B. 9.3 kcal/g
   C. 4.1 kJ/g;
   D. 9.3 kJ/g.
   81. Calculate the total energy change for the reaction of ethane formation from acetylene according to the stages of the overall process
   A. -313 kJ/mol;
   B. -39 kJ/mol;
   C. +313 kJ/mol;
   D. +39 kJ/mol.
82. A system which cannot exchange matter and energy with the surroundings is said to be:
   A. open;
   B. isolated;
   C. condenced;
   D. closed.
83. A system which can exchange energy but not matter is said to be:
   A. open;
   B. isolated;
   C. condenced;
   D. closed.
84. A system which can exchange both energy and matter is said to be:
   A. open;
   B. isolated;
   C. condenced;
   D. closed.
85. A human being is considered to be:
   A. an isolated system;
   B. a closed system;
   C. an open system;
   D. a human system.
86. The Universe is considered to be:
   A. an isolated system;
   B. a closed system;
   C. an open system;
   D. a human system.
87. If the half-life of a first order reaction in A is 2 min, how long will it take [A] to reach 25 per cent of its initial concentration?
   A. 3 min;
   B. 4 min;
   C. 6 min;
   D. 8 min.
88. What is the rate of a first-order reaction if the half-life of the reaction is 1 min 10 s and the concentration of the reactant is 0.5 mol/L?
   A. 1 • 10^-3 mol/(L•s);
   B. 5 • 10^-3 mol/(L•s);
   C. 1 • 10^-5 mol/(L•s);
   D. 5 • 10^-3 mol/(L•s).
89. The rate of a particular reaction quadruples when the temperature changes from 20 to 40 °C. Calculate the temperature coefficient.
   A. 2;
   B. 3;
   C. 4;
   D. 5.
91. Concentrated sulfuric acid has a dencity of 1.84 g/ml and is 95 % by mass of H2SO4. What is the molarity of the acid?
   A. 35.68 N;
   B. 17.8 M;
   C. 1.748 g/ml;
   D. 35.68 M.
92. Concentrated sulfuric acid has a dencity of 1.84 g/ml and is 95 % by mass of H2SO4. What is the normality of the acid?
   A. 35.68 N;
   B. 17.8 N;
   C. 1.748 g/ml;
   D. 35.68 M.
93. Concentrated sulfuric acid has a dencity of 1.84 g/ml and is 95 % by mass of H2SO4. What is the titre of the acid?
   A. 35.68 N;
   B. 0.95 g/ml;
   C. 1.748 g/ml;
   D. 35.68 M.
94. How many grams of lithium chloride are required to make 1 L of a 3 M solution?
   A. 42.5 g;
   B. 12.75 g;
   C. 21.0 g;
   D. 127.5 g.
95. What is the mass fraction percentage of the 0.8 M solution of Fe2(SO4)3 if the density of the solution is considered to be 1 g/ml?
   A. 0.32 %;
   B. 4.8 %;
   C. 32 %;
   D. 0.48 %.
96. What is the normality of the 0.8 M solution of Fe2(SO4)3 if the density of the solution is considered to be 1 g/ml?
   A. 0.32 N;
   B. 4.8 N;
   C. 32 N;
   D. 0.48 N.
97. What is the titre of the 0.8 M solution of Fe2(SO4)3 if the density of the solution is considered to be 1 g/ml?
   A. 0.32 g/ml;
   B. 4.8 g/ml;
   C. 32 g/ml;
   D. 0.48 g/ml.
98. The formula to calculate the titre of a solution is:
   A. T = V/m;
   B. T = mV;
   C. T = cMV;
   D. T = Wd.
99. The titre of 554 ml solution containing 2.5 g of a solute is:
   A. 4.5 g/L;
   B. 221.6 ml/g;
   C. 0.00451 g/ml;
   D. 0.2216 L/g.
100. The strong electrolyte is:
   A. silicon dioxide;
   B. sodium sulfate;
   C. the acetic acid;
   D. iron (III) hydroxide.
101. The strong electrolyte is:
   A. the nitrous acid;
   B. the acetic acid;
   C. the nitric acid;
   D. the phosphoric acid.
102. The weak electrolyte is:
   A. the nitrous acid;
   B. the nitric acid;
   C. the sulfuric acid;
   D. the carbonic acid.
103. The weak electrolyte is:
   A. nitric acid;
   B. sulfuric acid;
   C. perchloric acid;
   D. nitrous acid.
104. The weak electrolyte is:
   A. nitrous acid;
   B. potassium chloride;
   C. sodium phosphate;
   D. nitric acid.
105. The non-electrolyte is:
   A. aluminum sulfate
   B. potassium hydroxide;
   C. sugar;
   D. hydrogen sulfide.
106. Completely dissociated compound in water is:
   A. nitric acid;
   B. carbon dioxide;
   C. sugar;
   D. carbonic acid.
107. The author of the dissiciation concept is:
   A. Mendeleev;
   B. Arrhenius;
   C. Bronsted;
   D. Lewis.
108. The degree of dissociation for strong electrolytes is considered to be:
   A. negative;
   B. equal to 0;
   C. equal to 1;
   D. more than 1.
109. The van’t Hoff factor for a diluted solution of sodium chloride is:
   A. 0;
   B. 1;
   C. 2;
   D. 3.
110. The osmotic pressure of the blood is:
   A. 5.5 atm;
   B. 7.8 atm;
   C. 7.5 kPa;
   D. 7.4 kPa.
111. The physiological (isotonic) solution is:
   A. 5 % solution of glucose;
   B. 1 % solution of glucose;
   C. 0.9 % solution of NaCl;
   D. distilled water.
112. Calculate the sum of coefficients in the left part of the short form of the ionic equation for the reaction between Fe(OH)3 and H2SO4.
   A. 8;
   B. 16;
   C. 4.
   D. 22.
113. What is the pH value of the blood?
   A. 5.6;
   B. 6.7;
   C. 7.4;
   D. 8.0.
114. What is the pH value of the human saliva?
   A. 7.4;
   B. 6.4;
   C. 1.0;
   D. 6.8.
115. What is the pH value of the human stomach fluid?
   A. 7.4;
   B. 6.4;
   C. 1.0;
   D. 6.8.
116. What is the pH value of the human muscle fluid?
   A. 7.4;
   B. 6.4;
   C. 1.0;
   D. 6.83.
117. The acetic buffer system is:
   A. the acetic acid and its soluble salt;
   B. CH3COOH + NH4OH;
   C. CH3COOH + HCOOH;
   D. NH4OH + NH4Cl.
118. The ammonium buffer system is:
   A. the acetic acid and its soluble salt;
   B. CH3COOH + NH4OH;
   C. CH3COOH + HCOOH;
   D. NH4OH + NH4Cl.
119. The equation which allows to calculate the pH value of buffer solutions is:
   A. the de Broglie relation;
   B. the Schrodinger equation;
   C. the Ostwald’s equation;
   D. the Henderson-Hasselbalch equation.
120. Calculate the ratio of 0.1 M CH3COONa to 0.1 M acetic acid to get 20 ml of the buffer solution if the solution has pH 4.523. The dissociation constant of the acetic acid K is 3 • 10^-5.
   A. 5 ml of the acid and 15 ml of its salt;
   B. 15 ml of the acid and 5 ml of its salt;
   C. 20 ml of the acid and 0 ml of its salt;
   D. 10 ml of the acid and 10 ml of its salt.
121. How much of 0.3 M ammonium hydroxide should be mixed with 30 ml of 0.2 M solution of ammonium chloride to give a buffer solution of pH 8.65? K(NH4OH) = 1.8 • 10^-5.
   A. 3 ml;
   B. 5 ml;
   C. 7 ml;
   D. 4 ml.
122. Calculate the pH of a buffer solution that is 0.04 M CH3COONa and 0.08 M CH3COOH at 25°C. pKa = 4.74.
   A. 3.44;
   B. 4.44;
   C. 5.04;
   D. 4.00.
123. Calculate the pH of 0.02 M HNO2 having 50 % dissociation.
   A. 1;
   B. 2;
   C. 3;
   D. 4.
124. Calculate the pH value of 0.002 M KOH.
   A. 10.3;
   B. 11;
   C. 11.3;
   D. 10.
125. Calculate the pH value of 0.001 M KOH.
   A. 10.3;
   B. 11;
   C. 11.3;
   D. 10.
126. Calculate the pH value of 0.0001 M KOH.
   A. 10.3;
   B. 11;
   C. 11.3;
   D. 10.
127. Calculate the pH range of high capacity buffer containing formic acid HCOOH. Ka(HCOOH) = 1.8 • 10^-4.
   A. 2.75-4.75;
   B. 2.75-3.75;
   C. 3.75-4.75;
   D. 3.75-5.75.
128. Calculate the pH of a buffer solution that is 0.08 M CH3COONa and 0.04 M CH3COOH at 25°C. pKa = 4.74.
   A. 3.44;
   B. 4.44;
   C. 5.04;
   D. 4.00.
129. Calculate the pH range of high capacity buffer containing acetic acid CH3COOH. Ka(CH3COOH) = 1.8 • 10^-5.
   A. 2.75-4.75;
   B. 2.75-3.75;
   C. 3.75-4.75;
   D. 3.75-5.75.
130. The acidic medium is characterized by:
   A. pH 0;
   B. pH 5;
   C. pH 7;
   D. pH 10.
131. The sum of stoichiometric coefficients in the dissociation reaction of aluminum sulfate is:
   A. 3;
   B. 4;
   C. 5;
   D. 6.
132. The sum of stoichiometric coefficients in the dissociation reaction of sodium sulfate is:
   A. 3;
   B. 4;
   C. 5;
   D. 6.
133. The sum of stoichiometric coefficients in the dissociation reaction of sodium chloride is:
   A. 3;
   B. 4;
   C. 5;
   D. 6.
134. The sum of stoichiometric coefficients in the dissociation reaction of calcium chloride is:
   A. 3;
   B. 4;
   C. 5;
   D. 6.
135. The sum of stoichiometric coefficients in the dissociation reaction of aluminum chloride is:
   A. 3;
   B. 4;
   C. 5;
   D. 6.
136. The diameter of colloidal particles ranges:
   A. 0.01-1.0 nm;
   B. 1-100 nm;
   C. 100-1000 nm;
   D. 0.01-0.1 nm.
137. Optical property of colloidal solutions is:
   A. Brownian movement;
   B. Diffusion;
   C. Coagulation;
   D. Tyndall effect.
138. Coagulation is then followed by:
   A. sedimentation;
   B. aggregation;
   C. vaporization;
   D. elimination.
139. Coagulation begins when colloidal particles are:
   A. negatively charged;
   B. positively charged;
   C. neutral;
   D. small.
140. The granule of iron (III) hydroxide sol is:
   A. negatively charged;
   B. positively charged;
   C. neutral;
   D. both positively and negatively charged.
141. Particles of iron (III) hydroxide sol move at electrophoresis:
   A. to cathode;
   B. to anode;
   C. do not move;
   D. in different directions.
142. The charge of the granule of colloidal silver as a result of mixing AgNO3 and the excessive amount of potassium iodide is:
   A. positive;
   B. negative;
   C. neutral;
   D. 2+.
143. Electro-osmosis is:
   A. a motion of particles under the influence of electric field;
   B. a Brownian movement;
   C. a motion of liquid in porous body under the influence of electric field;
   D. conditioned by diffusion.
144. Electrophoresis is:
   A. a motion of particles under the influence of electric field;
   B. a Brownian movement;
   C. a motion of liquid in porous body under the influence of electric field;
   D. conditioned by diffusion.
145. Zeta-potential is the essence of:
   A. mechanical properties of colloids;
   B. optical properties of colloids;
   C. electrical properties of colloids;
   D. rheological properties of colloids.
146. Molecular solution is:
   A. mineral water;
   B. muddy water;
   C. smog;
   D. sweet water.
147. Pastes are:
   A. Suspensions;
   B. Emulsions;
   C. Colloidal solutions;
   D. True solutions.
148. The biological buffer operating effectively in blood plasma is:
   A. Hydrogen carbonate buffer system;
   B. Cyanic buffer system;
   C. Phosphate buffer system;
   D. Hemoglobin-oxyhemoglobin buffer system.
149. The biological buffer operating effectively in blood plasma is:
   A. Phosphate buffer system;
   B. Cyanic buffer system;
   C. Proteinaceous buffer system;
   D. Hemoglobin-oxyhemoglobin buffer system.
150. The biological buffer operating effectively in red blood cells is:
   A. Hydrogen carbonate buffer system;
   B. Cyanic buffer system;
   C. Proteinaceous buffer system;
   D. Hemoglobin-oxyhemoglobin buffer system.
151. The biological buffer operating effectively in red blood cells is:
   A. Hydrogen carbonate buffer system;
   B. Phosphate buffer system;
   C. Proteinaceous buffer system;
   D. Cyanic buffer system.
152. Diffusion is referred to:
   A. mechanical properties of colloids;
   B. optical properties of colloids;
   C. electrical properties of colloids;
   D. rheological properties of colloids.
153. Coagulation is referred to:
   A. mechanical properties of colloids;
   B. optical properties of colloids;
   C. electrical properties of colloids;
   D. rheological properties of colloids.
154. Sedimentation is referred to:
   A. mechanical properties of colloids;
   B. optical properties of colloids;
   C. electrical properties of colloids;
   D. rheological properties of colloids.
155. Tyndall effect is referred to:
   A. mechanical properties of colloids;
   B. optical properties of colloids;
   C. electrical properties of colloids;
   D. rheological properties of colloids.
156. Electro-kinetic phenomena are referred to:
   A. mechanical properties of colloids;
   B. optical properties of colloids;
   C. electrical properties of colloids;
   D. rheological properties of colloids.
157. Electrophoresis is referred to:
   A. mechanical properties of colloids;
   B. optical properties of colloids;
   C. electrical properties of colloids;
   D. rheological properties of colloids.
158. Electro-osmosis is referred to:
   A. mechanical properties of colloids;
   B. optical properties of colloids;
   C. electrical properties of colloids;
   D. rheological properties of colloids.
159. Viscosity is referred to:
   A. mechanical properties of colloids;
   B. optical properties of colloids;
   C. electrical properties of colloids;
   D. rheological properties of colloids.
160. Atherosclerosis is conditioned by:
   A. electro-osmosis;
   B. electrophoresis;
   C. coagulating process in the blood;
   D. Tyndall effect.
161. Coagulation is followed by:
   A. dissociation;
   B. diffusion;
   C. polarization;
   D. sedimentation.
162. A polymer of 2 g was put into the tube containing petrol. The polymer was then taken out of the tube, its mass became equal to 2.4 g. Calculate the degree of swelling (in %) of the polymer.
   A. 25 %
   B. 20 %
   C. 35 %
   D. 40 %
163. A polymer of 2 g was put into the tube containing petrol. The polymer was then taken out of the tube, its mass became equal to 2.5 g. Calculate the degree of swelling (in %) of the polymer.
   A. 25 %
   B. 20 %
   C. 35 %
   D. 40 %
164. A polymer of 4 g was put into the tube containing petrol. The polymer was then taken out of the tube, its mass became equal to 5 g. Calculate the degree of swelling (in %) of the polymer.
   A. 25 %
   B. 20 %
   C. 35 %
   D. 40 %
165. A polymer of 2 g was put into the tube containing petrol. The polymer was then taken out of the tube, its mass became equal to 2.8 g. Calculate the degree of swelling (in %) of the polymer.
   A. 25 %
   B. 20 %
   C. 35 %
   D. 40 %
166. Calculate the pH value of 0.002 M NaOH.
   A. 10.3;
   B. 11;
   C. 11.3;
   D. 10.
167. Calculate the pH value of 0.001 M NaOH.
   A. 10.3;
   B. 11;
   C. 11.3;
   D. 10.
168. Calculate the pH value of 0.0001 M NaOH.
   A. 10.3;
   B. 11;
   C. 11.3;
   D. 10.
169. A suspension is:
   A. a heterogeneous mixture containing solid particles that are sufficiently large for sedimentation;
   B. a mixture of two or more liquids that are normally immiscible;
   C. a mixture of two or more components;
   D. a homogeneous mixture of two components.
170. An emulsion is:
   A. a heterogeneous mixture containing solid particles that are sufficiently large for sedimentation;
   B. a mixture of two or more liquids that are normally immiscible;
   C. a mixture of two or more components;
   D. a homogeneous mixture of two components.
171. The solid dispersed phase is in:
   A. emulsion;
   B. fog;
   C. clouds;
   D. smoke.
172. The gaseous phase is in:
   A. emulsion;
   B. fog;
   C. clouds;
   D. foams.
173. Lyophilic colloid is:
   A. an emulsion;
   B. a suspension;
   C. a solution of protein;
   D. hydrosol of Fe(OH)3.
174. Alpha-helix of the protein molecule is:
   A. the primary structure;
   B. the secondary structure;
   C. the tertiary structure;
   D. the quaternary structure.
175. The colloidal solution with the gaseous dispersion medium is:
   A. a suspension;
   B. a foam;
   C. the oxygenated mineral water;
   D. smog.
176. The colloidal solution with the gaseous dispersion medium is:
   A. a suspension;
   B. a foam;
   C. the oxygenated mineral water;
   D. fog.
177. The colloidal solution with the solid dispersion medium is:
   A. a suspension;
   B. a foam rubber;
   C. the oxygenated mineral water;
   D. smog.
178. The core of silicon dioxide micelle is:
   A. H2SiO3;
   B. SiO2;
   C. positively charged;
   D. negatively charged.
179. The diffusion layer of silicon dioxide micelle may contain:
   A. Si;
   B. SiO2;
   C. H2SiO3;
   D. Na.
180. Granule does not contain:
   A. a diffusion layer;
   B. a core;
   C. the first diffusion layer;
   D. the second diffusion layer.
181. The atomic orbitals for carbon of methane are considered:
   A. nonhybridized orbitals;
   B. sp hybridized;
   C. sp2 hybridized;
   D. sp3 hybridized.
182. What is the bond angle between the hybrid orbitals in methane?
   A. 180°
   B. 120°
   C. 115.5°
   D. 109.5°
183. The hydrocarbon molecule ethyne has a total of:
   A. one sigma bond, two pi bonds;
   B. two sigma bonds, four pi bonds;
   C. three sigma bonds, two pi bonds;
   D. five sigma bonds, one pi bond.
184. Double bonds consist of:
   A. one sigma bond, one pi bond.
   B. two sigma bonds, one pi bond;
   C. one sigma bond, two pi bonds;
   D. two sigma bonds, two pi bonds.
185. Cyclopropane is
   A. an aliphatic compound;
   B. an aromatic compound;
   C. an alicyclic compound;
   D. a heterocyclic compound.
186. Pyrrole is
   A. an aliphatic compound;
   B. an aromatic compound;
   C. an alicyclic compound;
   D. a heterocyclic compound.
187. The structural formula of 2-methyl-1,3-butadiene is
   A. CH2=CH-CH=CH2
   B. CH2=C(CH3)-CH=CH2
   C. CH2=C(C2H5)-CH=CH2
   D. CH3CH(CH3)CH2CH3
188. The conjugated system is the molecule of
   A. butane;
   B. 1,4-pentadiene;
   C. 1,2-butadiene;
   D. 1,3-pentadiene.
189. Vitamin A is
   A. a п,п-conjugated system;
   B. a p,п-conjugated system;
   C. an aromatic system;
   D. a cumulated system.
190. The п,п conjugation is typical for:
   A. 1,3-butadiene;
   B. vinyl chloride;
   C. acetic acid;
   D. ehanol.
191. The type of conjugation in CH2=CH-CH=O is
   A. p,п conjugation;
   B. п,п conjugation;
   C. aromaticity;
   D. p,p conjugation.
192. p,п Conjugation is realized in
   A. 1,3-butadiene;
   B. naphthalene;
   C. acroleine;
   D. phenol.
193. According to the Huckel’s rule, the aromatic system contains
   A. (2n + 4) pi electrons;
   B. (4n + 4) pi electrons;
   C. (4n + 2) pi electrons;
   D. (2n + 2) pi electrons.
194. The aromatic system of benzene contains
   A. 6 pi electrons;
   B. 10 pi electrons;
   C. 14 pi electrons;
   D. 8 pi electrons.
195. The aromatic system of naphthalene contains
   A. 6 pi electrons;
   B. 10 pi electrons;
   C. 14 pi electrons;
   D. 8 pi electrons.
196. The aromatic system of anthracene contains
   A. 6 pi electrons;
   B. 10 pi electrons;
   C. 14 pi electrons;
   D. 8 pi electrons.
197. The aromatic system of phenanthrene contains
   A. 6 pi electrons;
   B. 10 pi electrons;
   C. 14 pi electrons;
   D. 8 pi electrons.
198. The aromatic system of azulene contains
   A. 6 pi electrons;
   B. 10 pi electrons;
   C. 14 pi electrons;
   D. 8 pi electrons.
199. Porphyrins contain in the porphine ring:
   A. 10 pi electrons;
   B. 14 pi electrons;
   C. 26 pi electrons;
   D. 30 pi electrons.
200. The molecule that has a chiral carbon is:
   A. 1-chloropropane;
   B. 1-chloro-2-bromopropane;
   C. 2-bromobutane;
   D. 3-chloropentane.
201. Which of the following represents a racemic mixture?
   A. 75% (R)-2-butanol, 25% (S)-2-butanol;
   B. 25% (R)-2-butanol, 75% (S)-2-butanol;
   C. 50% (R)-2-butanol, 50% (S)-2-butanol;
   D. none of the above.
   202. What is the correct IUPAC name for the following compound
   A. 2-ethylpentane;
   B. 4-ethylpentane;
   C. 3-methylhexane;
   D. 4-methylhexane.
203. The sum of the coefficients in the balanced reaction for the combustion of butane is
   A. 33
   B. 18
   C. 16
   D. 15
204. Which conformation is typical for cyclopentane?
   A. chair (C);
   B. envelope (E);
   C. boat (B);
   D. twist (T).
205. Which conformation is typical for cyclohexane?
   A. chair (C);
   B. envelope (E);
   C. banana (B);
   D. twist (T).
206. The most stable conformation of cyclohexane is the:
   A. Hayworth form;
   B. sawhorse form;
   C. Newman form;
   D. chair form.
207. In the chlorination of alkanes, the first step in which chlorine free radicals are produced is called:
   A. initiation;
   B. activation;
   C. propagation;
   D. deactivation.
   208. The correct IUPAC name for the following compound is
   A. cis-2-pentene;
   B. trans-2-pentene;
   C. cis-3-pentene;
   D. trans-3-pentene.
209. In the reaction of ethane and HCl, the H+ ion acts as the:
   A. nucleophile;
   B. electrophile;
   C. carbanion;
   D. carbonium ion.
   210. This molecular model is called
   A. ball-and-stick;
   B. space-filling;
   C. stick model;
   D. ball model.
211. Oxidation of butane yields:
   A. Acetone;
   B. ethane;
   C. ethanol;
   D. ethanoic acid.
212. The correct name of the following compound is: HOOC-CH2-COOH
   A. malonic acid;
   B. succinic acid;
   C. maleic acid;
   D. glutaric acid.
   213. The correct name of the following compound is
   A. malonic acid;
   B. succinic acid;
   C. maleic acid;
   D. glutaric acid.
   214. The correct name of the following compound is
   A. malonic acid;
   B. succinic acid;
   C. maleic acid;
   D. glutaric acid.
   215. The correct name of the following compound is
   A. malonic acid;
   B. succinic acid;
   C. maleic acid;
   D. glutaric acid.
   216. The correct name of the following compound is:
   A. catechol;
   B. dopa;
   C. dopamine;
   D. adrenaline.
   217. The correct name of the following compound is:
   A. catechol;
   B. dopa;
   C. dopamine;
   D. adrenaline.
   218. The correct name of the following compound is
   A. catechol;
   B. dopa;
   C. dopamine;
   D. adrenaline.
   219. The correct name of the following compound is
   A. catechol;
   B. dopa;
   C. dopamine;
   D. adrenaline.
220. Lactides are formed from:
   A. Alpha-hydroxy acids;
   B. Alpha-amino acids;
   C. Beta-amino acids;
   D. Gamma-hydroxy acids.
221. Diketopiperazines are formed from:
   A. Alpha-hydroxy acids;
   B. Alpha-amino acids;
   C. Beta-amino acids;
   D. Gamma-hydroxy acids.
222. Lactams are formed from:
   A. Alpha-hydroxy acids;
   B. Alpha-amino acids;
   C. Gamma-amino acids;
   D. Gamma-hydroxy acids.
223. Lactims may be produced from:
   A. diketopiperazines;
   B. lactides;
   C. lactams;
   D. lactones.
224. Lactones are formed from:
   A. Alpha-hydroxy acids;
   B. Alpha-amino acids;
   C. Beta-amino acids;
   D. Gamma-hydroxy acids.
   225. The correct name of the following formula is:
   A. paracetamol;
   B. Novocain;
   C. phenacetin;
   D. norsulfazole.
   226. The correct name of the following compound is:
   A. paracetamol;
   B. Novocain;
   C. phenacetin;
   D. norsulfazole.
   227. Which of the following compounds is an aromatic one?
   A. I
   B. II
   C. III
   D. IV.
   228. The correct name of the following drug is
   A. Novocain;
   B. Analgin;
   C. Amidopyrin;
   D. Phenacetin.
229. The methane molecule contains … atoms:
   A. 4
   B. 5
   C. 6
   D. 2
230. The propane molecule contains … hydrogen atoms:
   A. 2
   B. 4
   C. 6
   D. 8
231. pH is:
   A. logarithm of H+;
   B. logarithm of H-;
   C. negative logarithm of H+;
   D. negative logarithm of H-.
232. The sum total of pH and pOH in water solutions is equal to:
   A. 7;
   B. 14;
   C. 15;
   D. 0.
233. At pH > 7 the medium is:
   A. acidic;
   B. basic;
   C. neutral;
   D. salty.
234. At pH < 7 the medium is:
   A. acidic;
   B. basic;
   C. neutral;
   D. salty.
235. At pH 7 the medium is:
   A. acidic;
   B. basic;
   C. neutral;
   D. salty.
236. Buffer solutions do not change the pH value on adding:
   A. small amounts of acids or bases;
   B. great amounts of acids or bases;
   C. acids only;
   D. bases only.
237. The pH value of a solution may be determined by means of:
   A. enzymes;
   B. inhibitors;
   C. catalysts;
   D. indicators.
238. The concentration of H+ ions in water solution is 10^-5 M. Therefore, the medium of the solution is:
   A. acidic;
   B. basic;
   C. sweet;
   D. neutral.
239. The relative lowering of vapour pressure for a solution is equal to the mole fraction of the solute when solvent alone is volatile. This is the statement of:
   A. Henry’s law;
   B. van’t Hoff law;
   C. Raoult’s law;
   D. Ostwald’s law.
240. Calculate the titer of 554ml solution containing 2.5 g of a solute.
   A. 0.045 g/ml;
   B. 0.00451 g/ml;
   C. 4.51 g/l
   D. 2221.6 ml/g.
241. The physiological solution is:
   A. 5 % glucose;
   B. 0.9 % NaCl;
   C. 0.9 % glucose;
   D. 5 % NaCl.
242. Macroelement is:
   A. O;
   B. Fe;
   C. Se;
   D. Au.
243. Microelement (trace element) is:
   A. H;
   B. Ni;
   C. Cl;
   D. Au.
244. Microelement (trace element) is:
   A. H;
   B. Co;
   C. Cl;
   D. Au.
245. Macroelement is:
   A. Cu;
   B. Fe;
   C. K;
   D. Au.
246. Ultra-microelement is:
   A. H;
   B. Fe;
   C. Cl;
   D. Be.
247. The unsaturated hydrocarbon contains 5 carbons and two double bonds in the cycle. How many hydrogens does it contain?
   A. 5;
   B. 6;
   C. 8;
   D. 10.
248. The unsaturated hydrocarbon contains 5 carbons and two double bonds in the open chain. How many hydrogens does it contain?
   A. 5;
   B. 6;
   C. 8;
   D. 10.
249. What is the mass fraction percentage of the 0.8 M solution of Fe2(SO4)3 if the density of the solution is considered to be 1 g/ml?
   A. 0.32 %;
   B. 4.8 %;
   C. 32 %;
   D. 0.48 %.
250. What is the normality of the 0.8 M solution of Fe2(SO4)3 if the density of the solution is considered to be 1 g/ml?
   A. 0.32 N;
   B. 4.8 N;
   C. 32 N;
   D. 0.48 N.