
Тема 9. «Элементы биофизики рецепторных систем»

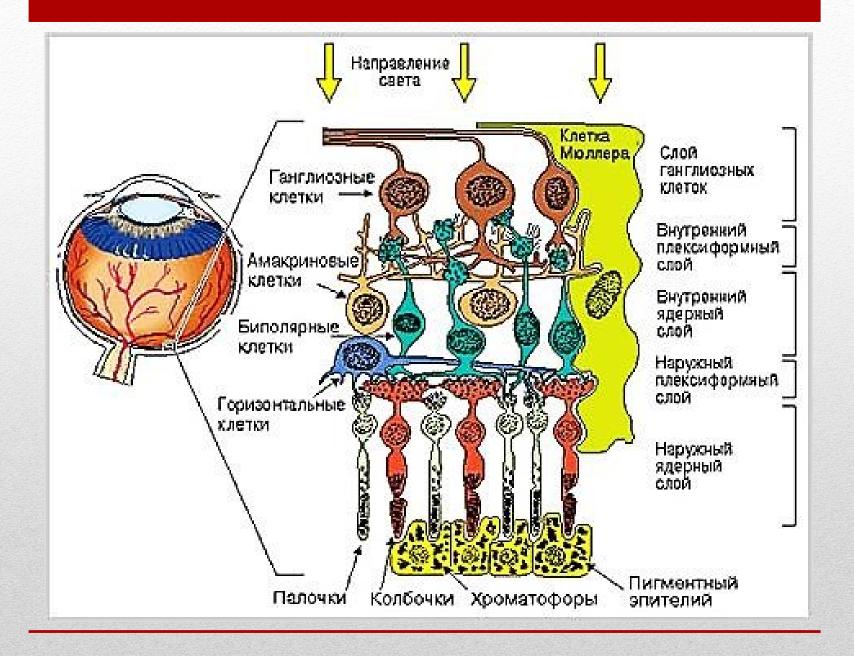
9.1. Зрительный анализатор

<u>Опр.</u> **Зрительный анализатор** — это сложная система органов, которая состоит из рецепторного аппарата, представленного органом зрения — глазом(1), проводящих путей(2) и конечного отдела — воспринимающих участков коры головного мозга(3).

Структурно-функциональная организация зрительного анализатора

Рецепторный отдел

Назначение: восприятие и первичный анализ изменений внешней и внутренней сред организма.

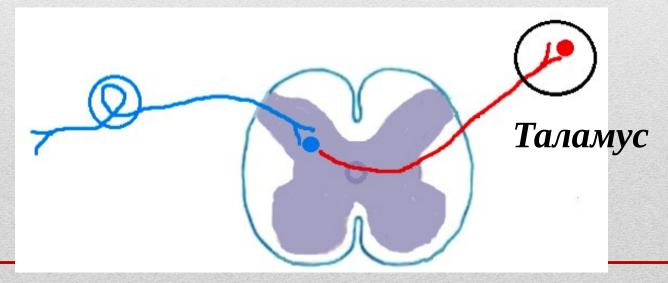

Восприятие раздражителей в рецепторах происходит благодаря трансформации энергии раздражителя в нервный импульс.

Палочковые **нейросенсорные** клетки

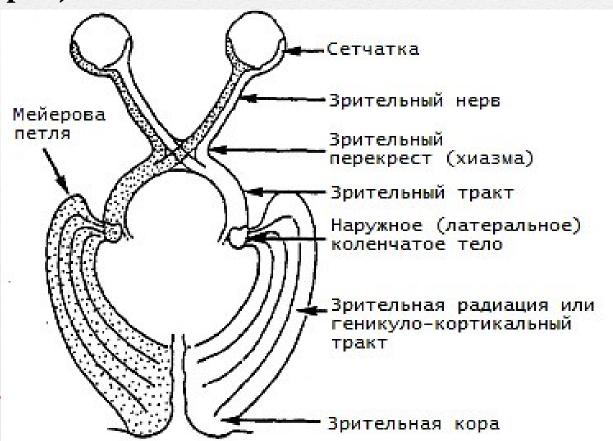
Восприятие световых лучей в условиях слабой освещенности (бесцветное или ахроматическое зрение).

Колбочковые нейросенсорные клетки

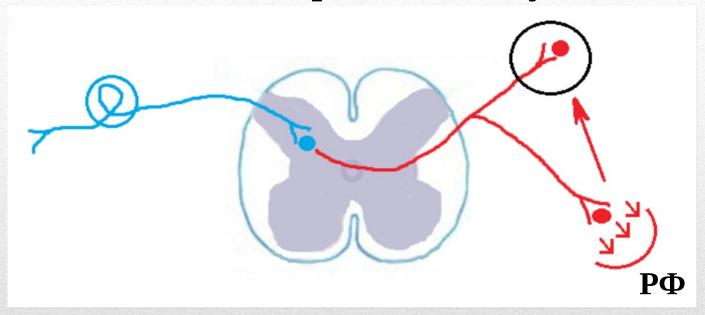
Восприятие световых лучей в условиях яркой освещенности (цветное или хроматическое зрение).



Проводниковый отдел


- включает афферентные (периферические) и промежуточные нейроны стволовых и подкорковых структур ЦНС. Проведение возбуждения по проводниковому отделу осуществляется двумя афферентными путями: таламус

• Специфический проекционный путь


- идет от рецептора по строго обозначенным специфическим путям с переключением на различных уровнях ЦНС

Зрительный путь начинается рецепторами **первых нейронов**, представленных специфическими образованиями - **палочками и колбочками**. Из них раздражение передается **биполярным клеткам (второй нейрон)**, затем - <u>ганглиозным</u> **(третий нейрон)**.

• Неспецифический путь

На уровне ствола мозга от специфического пути отходят коллатерали к клеткам ретикулярной формации, к которым могут конвергировать афферентные возбуждения, обеспечивая взаимодействие информации от различных анализаторов.

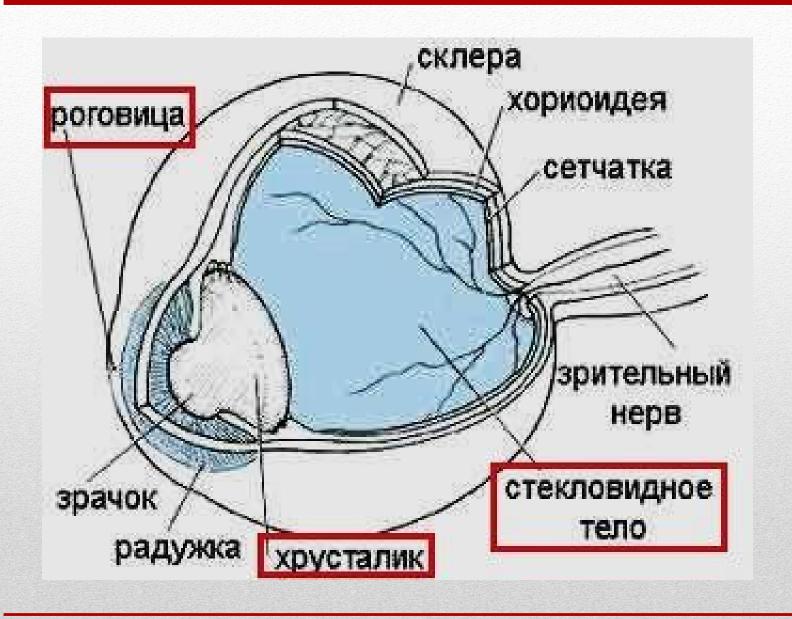
Центральный отдел

Центральная часть

Специфические нейроны, перерабатывающие афферентную импульсацию от рецепторов

Периферическая часть

Нейроны, рассредоточенные по коре большого мозга


На уровне коркового отдела осуществляются высший анализ и синтез афферентных возбуждений, обеспечивающие формирование полного представления об окружающей среде.

Светопреломляющий аппарат глаза

Светопреломляющий аппарат глаза представляет собой сложную систему линз, формирующую на сетчатке уменьшенное и перевёрнутое изображение.

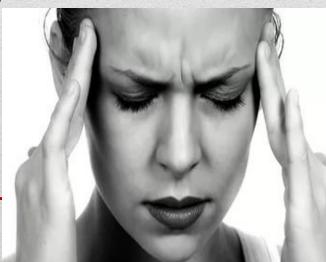
Включает:

- роговицу (зашитая функция-роговичный рефлекс; оптическая функция-прохождение и преломление лучей),
- хрусталик (аккомодация-изменение кривизны для фокусировки объема на сетчатку),
- **стекловидное тело** (проведение к сетчатке лучей света, благодаря прозрачности среды),
- жидкость передней и задней камеры глаза.

Светорегулирующий аппарат глаза

Зрачок — это круглое отверстие в центре радужки глаза. Благодаря способности изменять свой диаметр, зрачок регулирует поток лучей света, идущих в глаз и падающих на сетчатку.

Благодаря работе мышц зрачка, контролируется степень освещенности сетчатки.


9.2. Болевой анализатор

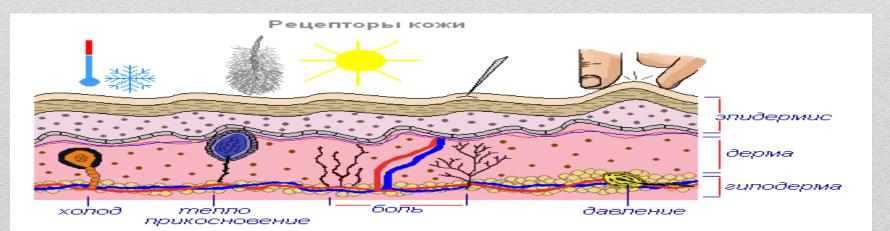
Болевой анализатор обеспечивает формирование болевых ощущений (боль), возникающих при воздействии повреждающих факторов. Ощущения боли выполняют сигнальную функцию. Болевые ощущения формируются на основе информации о нарушении целостности покровных оболочек, нарушении оптимального уровня окислительных процессов в тканях, обеспечивающих их нормальную

жизнедеятельность.

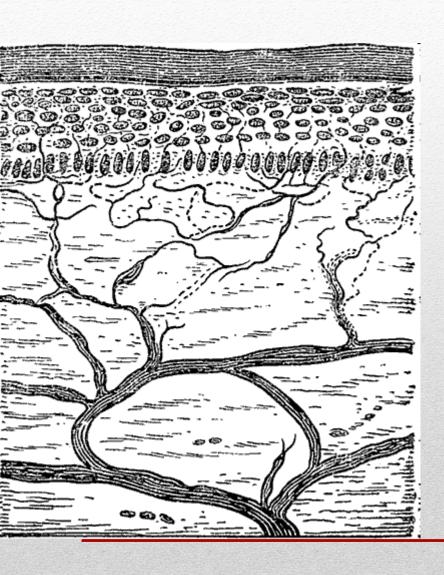
Физиологическая роль боли заключается:

- Выполняет роль сигнала об угрозе или повреждении тканей организма и предупреждает их.
- Является фактором мобилизации защитно-приспособительных реакций при повреждении его органов и тканей
- Имеет познавательную функцию: через боль человек начиная с раннего детства учится избегать возможные опасности внешней среды.
- Эмоциональный компонент боли выполняет функцию подкрепления при образовании условных рефлексов даже при однократном сочетании условного и безусловного раздражителей.

Теории боли


- 1. Теория интенсивности. Согласно этой теории боль не является специфическим чувством и не имеет своих специальных рецепторов, а возникает при действии сверхсильных раздражителей на рецепторы пяти органов чувств. В формировании боли участвуют конвергенция и суммация импульсов в спинном и головном мозге.
- 2. Теория специфичности. В соответствии с данной теорией боль является специфическим (шестым) чувством, имеющим собственный рецепторный аппарат, афферентные пути и структуры головного мозга, перерабатывающие болевую информацию.
- **3. Современная теория** боли базируется преимущественно на теории специфичности. Было доказано существование специфичных болевых рецепторов.

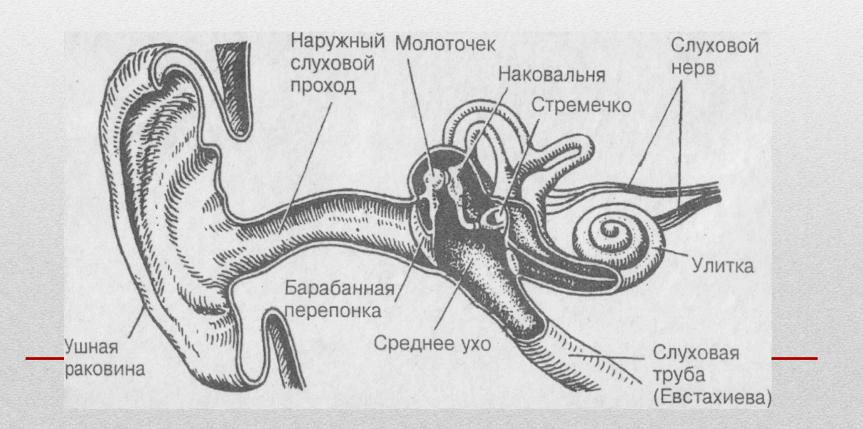
Нейрофизиологические механизмы боли


1. Ведущая роль в формировании реакции организма на повреждение принадлежит нервной и эндокринной системам. При этом нейрофизиологические процессы в ЦНС развертываются в основном под влиянием потока ноцирецептивных импульсов, берущих начало в соответствующих рецепторах поврежденных тканей. Но это нередко, особенно при тяжелой травме, не единственный источник импульсации, возбуждающей структуры ЦНС.

2. Опр. Болевые рецепторы (ноцирецепторы) - рецепторы, воспринимающие повреждение тканей и формирующие афферентный поток импульсов.

Болевые рецепторы являются свободными окончаниями чувствительных миелиновых и безмиелиновых нервных волокон, расположенных в коже, слизистых оболочках, надкостнице, зубах, мышцах, органах грудной и брюшной полости и других органах и тканях. Число ноцирецепторов в коже человека примерно 100-200 на 1 кв. см. кожной поверхности. Общее число таких рецепторов достигает 2-4 млн.

Болевые рецепторы и нервные волокна кожи



Рассматриваемые виды ноцицептивных рецепторов распределены в тканях неравномерно.

Механорецепторов больше в поверхностных слоях кожи, в фасциях, суставных сумках; хеморецепторы имеют более высокую концентрацию в глубоких слоях кожи, стенках сосудов, в висцеральных оболочках.

9.3. Слуховой анализатор

Слуховой анализатор включает в себя ухо, нервы и слуховые центры расположенные в коре головного мозга. В ухе человека различают три части: наружное, среднее и внутреннее ухо.

6 5

Спасибо за внимание!