МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «АСТРАХАНСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ» (ФГБОУ ВО АСТРАХАНСКИЙ ГМУ МИНЗДРАВА РОССИИ)

УТВЕРЖДАЮ

Проректор по учебно-воспитательной работе ФГБОУ ВО АСТРАХАНСКИЙ ГМУ Минздрава России Д.м.н., профессор Е.А. Попов 2019 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ «ХИМИЯ»

(наименование учебной дисциплины)

Направление подготовки (специальность) 31.05.03 стоматология				
Уровень высшего образования - <u>СПЕЦИАЛИТЕТ</u>				
Форма обученияочнаяочная (очная, заочная)				
Срок освоения ООП 5 лет				
(нормативный срок обучения)				
Кафедра Химии				
Основные параметры дисциплины:				
Kypc I				
Семестр <u>І</u>				
Число зачетных единиц3				
Всего часов по учебному плану				
Всего часов аудиторных занятий 72				
Лекции, час. 21				
Лабораторные работы, час. 51				
Самостоятельная работа, час. 36				
Форма итогового контроля по дисциплине зачет – 1 семестр				

При разработке рабочей программы учебной дисциплины (модуля) в основу положены:

1) ФГОС ВПО по направлению подготовки (специальности) **31.05.03 Стоматология**, утвержденный Министерством образования и науки РФ «9» февраля 2016 г. Пр. №96.

Учебный план по специальности **31.05.03 Стоматология**, утвержденный на ученом совете ФГБОУ ВО «Астраханский государственный медицинский университет» Минздрава РФ 29 мая 2019 года, протокол №9.

Рабочая программа учебной дисциплины (модуля) одобрена на заседании кафедры химии от « 11» июня 2019г. Протокол № 8

Заведующий кафедрой, д.м.н., профессор	подпись	Sh	(А.А. Николаев) ФИО
Рабочая программа учебной дисциплины (мод факультетов медико-биологического профиля			
Председатель Ученого Совета факультетов медико-биологического профиля	, д.м.н., доцен	T Auf (И.А. Аксенов) ФИО
Разработчики: Заведующий кафедрой, д.м.н., профессор (занимаемая должность)	(подпись)		А.А. Николаев инициалы, фамилия)
<u>Доцент кафедры химии, к.м.н.</u> (занимаемая должность)	У(подпись)	_	.И. Гудинская инициалы, фамилия)
Рецензент:	el	0	В. Бойко
химии, д.м.н., доцент			D. DUNKU

(подпись)

(инициалы, фамилия)

(занимаемая должность)

1. Цель и задачи освоения дисциплины «Химия» (далее – дисциплина).

Цель освоения дисциплины «Химия» состоит в овладении знаниями, навыками и умениями, необходимыми врачу - стоматологу об основных физико-химических закономерностях протекания химических процессов (в норме и при патологии) на молекулярном и клеточном уровнях; о строении и механизмах функционирования биологически активных соединений; формирование естественнонаучного мышления специалистов медицинского профиля.

При этом задачами дисциплины являются:

- приобретение студентами теоретических знаний об основных принципах молекулярной организации материи, законов взаимодействия химических соединений, биоэлементах и их свойствах, термодинамики, кинетики, теории растворов;
- формирование системы знаний о природе физико-химической процессов и механизмах реакций, происходящих в организме человека на молекулярном и клеточном уровне.
- формирование системы знаний, позволяющих на основе фундаментальных законов химии, понимать, оценивать и интерпретировать данные современных методов исследований;
- формирование навыков работы в лаборатории, умение производить физикохимические измерения, характеризующие те или иные свойства растворов, смесей и других объектов;
- умение раскрыть содержание методов прогнозирования результатов физикохимических процессов, протекающих в живых системах, опираясь на основные теоретические положения, а также научно обосновывать наблюдаемые явления.
- формирование знаний о методах исследований, принципах некоторых клиниколабораторных технологий, умения использовать их результаты для оценки состояния окружающей среды;
- формирование навыков решения типовых практических задач, т.е. овладеть теоретическим минимумом на уровне абстрактного воспроизведения знаний; изучения научной литературы и оформление протоколов лабораторных исследований;
- формирование у студентов представлений о принципах профилактики заболеваний, здоровом образе жизни;
- формирование у студента навыков общения с коллективом.

2. Место дисциплины в структуре ООП вуза.

- 2.1. Учебная дисциплина (модуль) «Химия» относится к естественнонаучному циклу и входит в федеральный компонент.
 - 2.2. Для изучения дисциплины необходимы следующие знания, умения и навыки:

Знаниями основ химии в объеме средней школы: Основные законы и понятия химии: строение атома и химической связи, принципы химического взаимодействия веществ. Основы химических классификаций и номенклатуры. Подходы, направления и методы, применяемые в современной химии.

Умения: ориентироваться в химической символике, различать специфические требования к работе с химическими веществами, свободно ориентироваться в выборе учебной литературы и поисковых систем.

Навыки: чтения химических реакций и самосовершенствования, применения этих знаний для решения практических задач.

2.3. Изучение дисциплины необходимо для знаний, умений и навыков, формируемых последующими дисциплинами/практиками:

- биологическая химия

Знания структуры органических и неорганических соединений, химической кинетики.

Умения анализировать зависимость функции соединений от их структуры.

Навыки работы в химической лаборатории, прогнозирования результатов физико-химических процессов.

- нормальная физиология

Знания молекулярных основ нормы и патологии; понимать, оценивать данные современных методов диагностики

Умения производить физико-химические измерения, характеризующие те или иные свойства растворов, смесей и других объектов; находить причинно-следственные связи. Навыки интерпретации результатов химического анализа: изменений физико-химической

среды

- общая гигиена

Знания строения и роли белков, жиров и углеводов для гигиены питания.

Умения связывать дефицит эссенциальных нутриентов с эндемическими заболеваниями.

Навыки расчета норм белков, жиров и углеводов для сбалансированного рациона питания у различных групп населения.

- фармакология

Знания молекулярного механизма действия лекарственных препаратов

Умения связывать эффекты действия фармакологических препаратов с их молекулярной структурой.

Навыки работы в исследовательских лабораториях.

3. Требования к результатам освоения дисциплины.

Изучение дисциплины направлено на формирование у обучающихся следующих общекультурных (ОК), общепрофессиональных (ОПК) и профессиональных (ПК) компетенций:

п/	Код	Содержание	B pea	зультате изу обучающи	чения дисци еся должны	
№	компет енции	компетенции (или ее части)	Знать	Уметь	Владеть	Оценочные средства*
1.	ОК-1	Способность к	химико-	пользоват	базовыми	
		абстрактному мышлению,	биологиче	ься	технологи	коллоквиум,
		анализу, синтезу	скую	учебной,	ями	контрольная
			сущность	научной,	преобразо	работа,
			процессов	научно-	вания	тестирование
			,	популярн	информац	компьютерно
			происходя	ой	ии:	e
			щих в	литератур	текстовые	
			живом	ой, сетью	,	
			организме	Интернет	табличны	
			на	для	e	

			молекуляр ном уровне;	профессио нальной деятельнос ти	редакторы , поиск в сети Интернет;	
2.	OПK-7	Способность и готовность к использованию основных физико — химических, математических и иных естественно — научных понятий и методов при решении профессиональных задач	строение и химическ ие свойства основных классов биологиче ски важных соединени й, основные метаболич еские пути их превраще ния; ;	пользоват ься физически м, химическ им и биологиче ским оборудова нием; работать с увеличите льной техникой (микроско пами, оптически ми и простыми лупами);п роводить статистич ескую обработку эксперимен тальных данных	химическ им понятийн ым аппаратом ; простейш ими медицинс кими инструмент ами	коллоквиум, контрольная работа, тестирование компьютерно е,
3.	ПК-17	Готовность к анализу и публичному представлению медицинской информации на основе доказательной медицины	строение и функции наиболее биологиче ски важных химическ их соединени й, химикобиологиче скую сущность процессов , происходя щих в живом организме на молекуляр ном уровне;	пользоват ься учебной, научной, научно-популярн ой литератур ой, сетью Интернет для профессион альной деятельност и	ОГО	Коллоквиум, контрольная работа, тестирование компьютерно е.

					процессах и для оценки состояния внешней среды; базовыми технологи ями преобразо вания информац ии: текстовые , табличны е редакторы , поиск в сети Интернет;	
4.	ПК-18	способность к участию в проведении научных исследований	химико- биологичес кую сущность процессов, происходящ их в живом организме на молекулярн ом уровне; строение и химические свойства основных классов биологичес ки важных органическ их соединений; строение и функции наиболее важных химических соединений (нуклеинов ых кислот, природных белков, водораствор имых и жирораство	производит ь расчеты по результатам эксперимен та;	и планирован ия и разработки медико- биологичес ких эксперимен тов;	Коллоквиум, контрольная работа, тестирование компьютерно е

	римых		
	витаминов,		
	гормонов и		
	др.); роль		
	биогенных		
	элементов и		
	их		
	соединений		
	в живых		
	организмах,		
	применение		
	их		
	соединений		
	В		
	медицинско		
	й практике		
	для		
	решения		
	профессион		
	альных и		
	научно-		
	исследовате		
	льских		
	задач		

^{*}виды оценочных средств, которые могут быть использованы при освоении компетенций: коллоквиум, контрольная работа, собеседование по ситуационным задачам, тестирование письменное или компьютерное, типовые расчеты, индивидуальные задания

4. Разделы дисциплины и компетенции, которые формируются при их изучении:

			щии, которые формируются при их изучении.
п/№	Код компетен ции	Наименование раздела дисциплины	Содержание раздела в дидактических единицах
1.	ОК–1 ОПК-7 ПК-17 ПК-18	Элементы химической термодинамики и кинетики	Предмет химической термодинамики. Типы термодинамических систем и процессов. Основные понятия термодинамики — внутренняя энергия; теплота и работа как формы передачи энергии. Первый закон термодинамики. Энтальпия. Стандартные энтальпии образования и сгорания веществ. Закон Гесса. Второй закон термодинамики. Энтропия. Энергия Гиббса. Критерии равновесия и направления самопроизвольного протекания процессов в закрытых системах. Роль энтальпийного и энтропийного факторов. Экзэргонические и эндэргонические процессы, протекающие в организме. Термодинамика химического равновесия. Процессы обратимые и необратимые по направлению. Константы химического равновесия. Прогнозирование смещения химического равновесия. Стационарное состояние живого организма.

	OK-1	Vuotuud o maarmarav	Термодинамика фазовых равновесий. Фазовые превращения и равновесия. Одно- и двухкомпонентные системы. Диаграммы состояния. Твёрдые растворы. Предмет и основные понятия химической кинетики. Химическая кинетика как основа для изучения скоростей и механизмов биохимических процессов. Скорость реакции, средняя скорость реакции в интервале времени, истинная скорость. Зависимость скорости реакции от концентрации реагентов. Константа скорости. Кинетические уравнения реакций. Порядок реакции. Период полупревращения. Понятие о фармакокинетике. Зависимость скорости реакции от температуры. Теория активных соударений. Энергетический профиль реакции; энергия активации; уравнение Аррениуса. Понятие о теории переходного состояния. Катализ. Гомогенный, гетерогенный катализ. Энергетический профиль каталитической реакции. Понятие об ингибиторах, промоторах, активаторах. Особенности каталитической активности ферментов. Уравнение Михаэлиса-Ментен. Химическая кинетика как основа для изучения скоростей и механизмов биохимических процессов
2.	ОК–1 ОПК-7 ПК-17 ПК-18	Учение о растворах. Основные типы химических равновесий и процессов в жизнедеятельности.	Роль воды и растворов в жизнедеятельности. Физико-химические свойства воды. Термодинамика растворения. Законы Генри, Дальтона, Сеченова. Коллигативные свойства разбавленных растворов неэлектролитов и электролитов. Закон Рауля. Изменение температуры фазовых переходов. Осмос. Осмотическое давление, закон Вант-Гоффа. Осмоляльность. Изоосмия. Роль осмоса в биологических системах. Протолитические равновесия и процессы. Элементы теории растворов сильных электролитов (Дебая-Хюккеля). Ионная сила раствора. Активность и коэффициент активности ионов. Константы кислотности и основности. Закон Оствальда. Влияние различных факторов на степень ионизации протолита. Протолитическая теория Брёнстеда-Лоури. Электронная теория (Льюиса) кислот и оснований. Константа автопротолиза воды. Расчёт рН протолитических систем. Буферные системы.

			Mayayyyay bydanyana nayanya 6-1
			Механизм буферного действия, буферная
			ёмкость. Буферные системы организма.
			Понятие о кислотно-основном гомеостазе
			организма.
			Гетерогенные равновесия и процессы.
			Растворение малорастворимых электролитов
			в воде. Константа растворимости. Условия
			растворения и образования осадков.
			Гидроксисапатит и фторапатит –
			неорганические вещества костной ткани и
			зубной эмали. Механизм кальцификации и
			функционирования кальциевого буфера.
			Явление изоморфизма. Остеотропность
			металлов. Реакции, лежащие в основе
			образования конкрементов.
			Лигандообменные равновесия и процессы.
			Теория комплексных соединений,
			устойчивость комплексных соединений в
			растворе. Константа нестойкости
			комплексного иона. Инертные и лабильные
			комплексы. Представления о строении
			металлоферментов и других
			биокомплексных соединений (гемоглобин,
			цитохромы, кобаламины).
			Редокс-равновесия и процессы. Механизм
			возникновения электродного потенциала.
			Гальванический элемент. ЭДС гальванического
			элемента. Понятие о редокс-системе.
			Окислительно-восстановительные потенциалы как
			критерий направления редокс-процесса. Уравнение
			Нернста-Петерса. Электрохимия и репарация
			костной ткани. Коррозия химическая и
3.	ОК-1	Физико-химия	электрохимическая.
٥.	ОК-1 ОПК-7	поверхностных	Термодинамика поверхностного слоя.
	ПК-17	явлений	Поверхностная энергия Гиббса и поверхностное
	ПК-17	ИВЛОПИИ	натяжение. Методы определения поверхностного
			натяжения. Поверхностно-активные, неактивные и инактивные вещества. Правило Траубе.
			Межфазовые границы раздела. Энтальпия смачивания и коэффициент гидрофильности.
			Адгезия и когезия. Поверхностное натяжение
			биожидкостей в норме и при патологии.
			Адсорбция. Уравнение изотермы адсорбции Гиббса. Измерение адсорбции на границе раздела
			твёрдое тело – газ и твёрдое тело – жидкость.
			Твердое тело – газ и твердое тело – жидкоеть. Факторы, влияющие на адсорбцию газов и
			растворённых веществ. Мономолекулярная
			адсорбция, уравнение изотермы адсорбции
			Ленгмюра. Уравнение изотермы адсорбции
			Фрейндлиха. Полимолекулярная адсорбция.
	1	•	<u> </u>

			Капиллярная конденсация, абсорбция, хемосорбция. Адсорбция электролитов. Неспецифическая (эквивалентная) адсорбция ионов. Правило Панета-Фаянса. Ионообменная адсорбция. Физико-химические основы
4.	ОК-1	Физико-химия	адсорбционной терапии, гемосорбции, применения в медицине ионитов.
4.	ОК-1 ОПК-7 ПК-17 ПК-18	Физико-химия дисперсных систем и растворов ВМС	Структура дисперсных систем. Дисперсная фаза и дисперсионная среда. Степень дисперсности. Классификация дисперсных систем: по степени дисперсности, по агрегатному состоянию фаз (аэрозоли, лиозоли, солизоли); по силе межмолекулярного взаимодействия между дисперсной фазой и дисперсионной средой (необратимые и обратимые, лиофобные и лиофильные коллоиды); по подвижности дисперсной фазы (свободнодисперсные и связнодисперсные коллоидные системы). Методы получения и очистки коллоидных растворов. Диализ, электродиализ, ультрафильтрация. Природа электрических явлений в дисперсных системах. Строение частиц дисперсной фазы лиофобных и лиофильных мицеллярных коллоидных систем. Механизм возникновения электрического заряда коллоидных частиц. Строение двойного электрического слоя. Мицелла, агрегат, ядро, коллоидных частица (гранула). Заряд и электрокинетический потенциал коллоидной частицы. Влияние электролитов на электрокинетический потенциал. Явление перезарядки коллоидных частиц. Электрокинетические явления: электрофорез и электрокинетическия потенциал. Явление перезарядки коллоидных частиц с их электрокинетическия потенциал. Увление перезарядки коллоидных частиц с их электрокинетическия потенциал. Увление перезарядки коллоидных частиц с их электрокинетическия потенциал узоктрофоретической скорости коллоидных частиц с их электрокинетическия потенциалом (уравнение Гельмгольца-Смолуховского). Электрофоретическая подвижность. Кинетическая и агрегативная устойчивость коллоидных растворов. Агрегация и седиментация частиц дисперсной фазы. Коагуляция и факторы, её вызывающие. Медленная и быстрая коагуляция. Порог коагуляция и его определение. Правило Шульце-Гарди. Чередование зон коагуляции. Коагуляция золей смесями электролитов: аддитивность, антагонизм, синергизм. Пептизация.
			Свойства растворов ВМС. Особенности растворения ВМС как следствие их структуры. Форма макромолекул. Механизм набухания и

			растворения ВМС. Зависимость величины набухания от различных факторов. Аномальная вязкость растворов ВМС. Вязкость крови и других биологических жидкостей. Осмотическое давление растворов биополимеров. Изоэлектрическая точка и методы её определения. Мембранное равновесие Доннана. Онкотическое давление плазмы и сыворотки крови. Устойчивость растворов биополимеров. Высаливание. Коацервация и её роль в биологических системах. Застудневание растворов ВМС. Синерезис.
5.	ОК-1 ОПК-7 ПК-17 ПК-18	Биологически активные соединения, лежащие в основе функционирования живых систем	Поли- и гетерофункциональность как один из характерных признаков органических соединений, участвующих в процессах жизнедеятельности и используемых в качестве лекарственных веществ. Особенности химического поведения поли- и гетерофункциональных соединений: кислотно-основные свойства (амфолиты), циклизация и хелатообразование. Взаимное влияние функциональных групп. Полифункциональные соединения. Многоатомные спирты. Хелатные комплексы. Сложные эфиры многоатомных спиртов с неорганическими кислотами (нитроглицерин, фосфаты глицерина, инозита). Двухатомные фенолы: гидрохинон, резорцин, пирокатехин. Фенолы как антиоксиданты. Полиамины: этилендиамин, путресцин, кадаверин. Двухосновные карбоновые кислоты: щавелевая, малоновая, янтарная, глутаровая, фумаровая. Превращение янтарной кислоты в фумаровую как пример биологической реакции дегидрирования. Гетерофункциональные соединения. Аминоспирты: аминоэтанол (коламин), холин, ацетилхолин. Аминофенолы: дофамин, норадреналин, адреналин. Понятие о биологической роли этих соединений и их производных. Гидрокси- и аминокислоты. Влияние различных факторов на процесс образования циклов (стерический, энтропийный). Лактоны. Лактамы. Представление о β- лактамных антибиотиках. Одноосновные (молочная, β- и γ-гидроксимасляные), двухосновные (яблочная, винные), трехосновные (яблочная, винные), трехосновные (лимонная) гидроксикислоты.

6.	ОК–1 ОПК-7 ПК-17 ПК-18	Строение и свойства биологически активных полимеров, лежащих в основе функционирования живых систем. Полимеры	щавелевоуксусная, α-оксоглутаровая. Реакции декарбоксилирования β-кетонокислот и окислительного декарбоксилирования кетонокислот. Кетоенольная таутомерия. Гетерофункциональные производные бензольного ряда как лекарственные средства (салициловая, аминолбензойная, сульфаниловая кислоты и их производные). Биологически важные гетероциклические соединения. Тетрапиррольные соединения (порфин, гем и др.). Производные пиридина, изоникотиновой кислоты, пиразола, имидазола, пиримидина, пурина, тиазола. Кето-енольная и лактим-лактамная таутомерия в гидроксиазотосодержащих гетероциклических соединениях. Барбитуровая кислота и её производные. Гидроксипурины (гипоксантин, ксантин, мочевая кислота). Фолиевая кислота, биотин, тиамин. Понятие о строении и биологической роли. Представление об алкалоидах и антибиотиках Пептиды и белки. Биологически важные реакции α-аминокислот: дезаминирование, гидроксипирование. Роль гидроксипролина в стабилизации спирали коллагена дентина и эмали. Декарбоксилирование α-аминокислот — путь к образованию биогенных аминов и биорегуляторов. Пептиды. Кислотный и щелочной гидролиз пептидов. Установление аминокислотного
		назначения	состава с помощью современных физико- химических методов. Кальций-связывающие белки дентина и эмали. Изменение аминокислотного состава коллагена дентина при эволюции зубного зачатка в постоянный зуб. Углеводы. Гомополисахариды: (амилоза, амилопектин, гликоген, декстран, целлюлоза). Пектины. Монокарбоксилцеллюлоза, полиакрилцеллюлоза — основа гемостатических перевязочных материалов. Гетерополисахариды: гиалуроновая кислота, хондроитинсульфаты. Гепарин. Понятие о смешанных биополимерах (гликопротеины, гликолипиды и др.). Влияние мукополисахаридов на стабилизацию структуры коллагена дентина и эмали. Нуклеиновые кислоты. Нуклеозидмоно- и полифосфаты. АМФ, АДФ, АТФ.

Нуклеозидциклофос-фаты (ЦАМФ). Их роль
как макроэргических соединений и внутриклеточных биорегуляторов.
Липиды. Омыляемые липиды. Естественные
жиры как смесь триацилглицеринов.
Понятие о строении восков. Основные
природные высшие жирные кислоты,
входящие в состав липидов: пальмитиновая,
стеариновая, олеиновая, линолевая,
линоленовая, арахидоновая.
Полимеры. Понятие о полимерах медицинского
назначения.

5. Распределение трудоемкости дисциплины.

5.1. Распределение трудоемкости дисциплины и видов учебной работы по семестрам:

от гаспределение трудоемкости дисциплины и видов учесной расоты по семестрам.					
Вид учебной работы		Трудо	емкость	Трудоемкость по	
	объем в	объем в	семестрам (АЧ)		
		зачетных	академичес	1	
		единицах	ких часах		
		(3E)	(AY)		
Аудиторная работа, в том чис.	2	72	72		
Лекции (Л)	0,25	21	21		
Лабораторные практикумы (0,5	51	51		
Самостоятельная работа студе	ента (СРС)	0,25	36	36	
Промежуточная аттестация					
DOMOTION ON CAMADAMA AND	зачет	1			
зачет/экзамен (указать вид) экзам					
ИТОГО		3	108	108	

5.2. Разделы дисциплины, виды учебной работы и формы текущего контроля:

Π/	№	Наименование	I	Зиды	учеб	ной ра	боті	ы (в А	1)	Оценочные
No	сем	раздела дисциплины								средства
	естр									
	a					•				
			Л	Л	Π	КΠ	C	CP	всег	
				П	3	3		С	o	
1.	1	Элементы химической термодинамики и кинетики	4	9				6	19	устный опрос, собеседование, коллоквиум
2.	1	Учение о растворах. Основные типы химических равновесий и	8	15				6	29	устный опрос, собеседование , коллоквиум

		процессов в жизнедеятельности						
3.	1	Физико-химия поверхностных явлений	1	3		6	10	устный опрос, собеседование
4.	1	Физико-химия дисперсных систем и растворов ВМС	1	3		6	10	устный опрос, собеседование , коллоквиум
5.	1	Биологически активные органические соединения, лежащие в основе функционирования живых организмов	4	9		6	19	устный опрос, собеседование , коллоквиум
6.	1	Строение и свойства биологически активных полимеров, лежащих в основе функционирования живых систем. Полимеры медицинского назначения	3	12		6	21	устный опрос, собеседование
	1	ИТОГО	21	51		36	108	

5.3. Распределение лекций по семестрам:

п/№	Название тем лекций учебной дисциплины	Объем в АЧ
1	2	1 семестр
1.	I Начало термодинамики. Термохимические уравнения. Закон Гесса. Применение I начала термодинамики к биосистемам. II Начало термодинамики. Энтропия. Энергия Гиббса. Эндэргонические и экзэргонические процессы в организме.	2
2.	Термодинамика химического равновесия. Константа химического равновесия. Принцип смещения химического равновесия.	1

3.	Химическая кинетика. Кинетические модели химических процессов. Зависимость скорости реакции от различных факторов. Катализ.	1
4.	Фазовые равновесия и превращения.	1
5.	Учение о растворах. Теория растворов сильных электролитов. Протолитическая и электронная теории кислот и оснований. Константа автопротолиза воды. Водородный показатель. Типы протолитических реакций. Коллигативные свойства	2
6.	Буферные системы, их классификация, механизм действия. Буферная ёмкость. Буферные системы крови, слюны.	2
7.	Гетерогенные равновесия. Константа растворимости. Химические реакции, лежащие в основе образования зубной и костной ткани, конкрементов.	1
8.	Комплексные соединения. Устойчивость в водном растворе. Константа нестойкости.	1
9.	Электрохимия. Потенциометрия. Коррозия и методы защиты от неё.	1
10.	Физико-химия поверхностных явлений. Адсорбция на подвижной и неподвижной границах раздела фаз.	1
11.	Физико-химия дисперсных систем. Коллоидные растворы. Устойчивость, коагуляция. Пептизация. Растворы ВМС.	1
12.	Поли- и гетерофункциональные соединения.	1
13.	Биологически активные гетероциклические соединения.	1
14.	Углеводы.	2
15.	Пептиды и белки. Строение и свойства биологически активных полимеров.	1
16.	Нуклеиновые кислоты.	1
17.	Липиды.	1
	ИТОГО (всего - 21 АЧ)	21

5.4. Распределение лабораторных практикумов по семестрам:

п/№	Наименование лабораторных практикумов	Объем в АЧ
		1 семестр
1.	Фазовые равновесия. Построение фазовой диаграммы бинарной смеси. Тестовая контрольная.	3
2.	Определение теплоты реакции нейтрализации.	3

3.	Основные закономерности протекания реакций (химическая термодинамика, кинетика). Скорость химической реакции. Катализ. Тестовая контрольная.	3
4.	Гемолиз эритроцитов. Криометрическое определение молярной массы неэлектролита.	3
5.	Свойства растворов электролитов. Гидролиз солей.	3
6.	Потенциометрическое определение рН раствора. Определение буферной ёмкости раствора.	3
7.	Изучение условий растворения и образования осадков. Комплексные соединения.	3
8.	Химическое равновесие	3
9.	Изучение изотермы поверхностного натяжения изоамилового спирта. Адсорбция уксусной кислоты на активированном угле.	3
10.	Основные типы равновесий и процессов в жизнедеятельности. Тестовая контрольная.	3
11.	Поли- и гетерофункциональные соединения. Тестовая контрольная.	3
12.	Биологически активные гетероциклические соединения. Тестовая контрольная.	3
13.	Углеводы. Тестовая контрольная.	3
14.	Пептиды и белки. Тестовая контрольная.	3
15.	Получение и свойства коллоидных растворов. Коагуляция гидрофобных золей. Свойства растворов ВМС.	3
16.	Нуклеиновые кислоты. Тестовая контрольная.	3
17.	Липиды. Тестовая контрольная.	3
	ИТОГО (всего - 51 АЧ)	51

5.8. Распределение самостоятельной работы студента (СРС) по видам и семестрам:

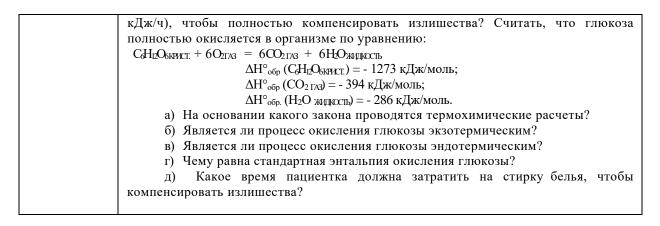
п/№	Наименование вида СРС*	Объем в АЧ
		1 семестр
1.	Подготовка к практическим занятиям: чтение и анализ трудов отечественных и зарубежных ученых.	20
2.	Подготовка доклада к конференции	8
3.	Работа с электронными образовательными ресурсами	8
	ИТОГО (всего - 36 АЧ)	36

^{*}виды самостоятельной работы: работа с литературными и иными источниками информации по изучаемому разделу, в том числе в интерактивной форме, выполнение заданий, предусмотренных рабочей программой (групповых и (или) индивидуальных) в форме написания историй болезни, рефератов, эссе, подготовки докладов, выступлений; подготовка к участию в занятиях в интерактивной форме (ролевые и деловые игры, тренинги, игровое проектирование, компьютерная симуляция, дискуссии), работа с электронными образовательными ресурсами, размещенными на образовательном портале вуза, подготовка курсовых работ и т.д.

6. Оценочные средства для контроля успеваемости и результатов освоения дисциплины.

6.1. Формы текущего контроля и промежуточной аттестации*, виды оценочных средств:

0.1. 40	риы тег	Тущего ког	нгроля и промежуточной 		учные средст	•
№ п/п	№ семес тра	Формы контроля	Наименование раздела дисциплины	Виды	Кол-во вопросов в задании	Кол-во независим ых вариантов
1	2	3	4	5	6	7
1.	1	ВК ТК ПК	Элементы химической термодинамики и кинетики	устный опрос коллоквиум компьютерно е тестирование	1-2 2 10	28 27 ∞
2.	1	ВК ТК ПК	Учение о растворах. Основные типы химических равновесий и процессов в жизнедеятельности	устный опрос коллоквиум компьютерно е тестирование	1-2 2 10	24 23 ∞
3.	1	BK TK IIK	Физико-химия поверхностных явлений	устный опрос компьютерно е тестирование	1-2 2 20	22 22 ∞
4.	1	ВК ТК ПК	Физико-химия дисперсных систем и растворов ВМС	устный опрос коллоквиум компьютерно е тестирование	1-2 2 10	25 25 ∞
5.	1	ВК ТК ТК	Биологически активные органические соединения, лежащие в основе функционирования живых организмов	устный опрос коллоквиум компьютерно е тестирование	1-2 2 10	24 26 ∞
6.	1	ВК ТК ПК	Строение и свойства биологически активных полимеров, лежащих в основе	устный опрос компьютерно е тестирование	1-2 2 10	17 18 ∞


	функциониров	вания		
	живых	систем.		
	Полимеры			
	медицинского	•		
	назначения			

^{*}формы текущего контроля: контроль самостоятельной работы студента, контроль освоения темы; формы промежуточной аттестации: зачет, экзамен

6.2. Примеры оценочных средств:

<u> </u>	имеры оценочных средств:				
для входного	Установите соответствие (цифра - буква):				
контроля (ВК)	ПРОЦЕССОБЯЗАТЕЛЬНО СОПРОВОЖДАЕТСЯ				
	1) гидролиза соли А. выделением теплоты				
	2) нейтрализации Б. изменением окраски раствора				
	3) распределения раствора в В. не сопровождается тепловым эффектом				
	сообщающихся сосудах Г. образованием осадка				
	Д. поглощением теплоты				
	Е. выделением газа				
	Выберите только один правильный ответ:				
	ЕСЛИ В РЕЗУЛЬТАТЕ РЕАКЦИИ ЭНТАЛЬПИЯ ВОЗРАСТАЕТ ($\Delta H^0_{P-H} > 0$), ТО ЭТО РЕАКЦИЯ:				
	1) экзэргоническая				
	2) окислительно-восстановительная				
	3) эндэргоническая				
	4) экзотермическая				
	5) эндотермическая				
	Выберите только один правильный ответ:				
	ПРИ ОКИСЛЕНИИ 1 Г ЖИРА В КОЛБЕ ВЫДЕЛЯЕТСЯ ОПРЕДЕЛЁННОЕ КОЛИЧЕСТВО ЭНЕРГИИ. КАКОЕ КОЛИЧЕСТВО ЭНЕРГИИ (В СООТВЕТСТВИИ С ЗАКОНОМ ГЕССА) ДОЛЖЕН ПОЛУЧИТЬ ОРГАНИЗМ ЧЕЛОВЕКА ПРИ ПЕРЕВАРИВАНИИ 1 Г ТАКОГО ЖЕ ЖИРА? 1. меньшее				
	2. большее				
	3. такое же				
	4. данных для ответа недостаточно				
_	5. когда как				
для текущего	Выполните расчёт и выберите правильный ответ:				
контроля (ТК)	РАССЧИТАЙТЕ СТАНДАРТНУЮ ЭНЕРГИЮ ГИББСА РЕАКЦИИ ГИДРАТАЦИИ ЛАКТОГЛОБУЛИНА ПРИ 25°С, ДЛЯ КОТОРОЙ $\Delta H^0_{P-H}=$ -6,75 КДЖ/МОЛЬ, $\Delta S^0_{P-H}=$ -9,74 ДЖ/К.				
	1) -13,85 кДж/моль				
	2) +13,85 кДж/моль				
	3) +3,85 кДж/моль				
	4) -3,85 кДж/моль				
	5) +31,85 кДж/моль				
	Выполните расчёт и выберите правильный ответ:				
	РАССЧИТАЙТЕ ЭНТАЛЬПИЮ ΔH^0_{P-H} ГИДРОЛИЗА МОЧЕВИНЫ В ОРГАНИЗМЕ ДО АММИАКА И ОКСИДА УГЛЕРОДА (IV)				
	СО(NH ₂) _{2 раствор} + H ₂ O $_{\text{жидкость}}$ → 2NH _{3 газ} + CO _{2 газ} ПО СЛЕДУЮЩИМ ДАННЫМ, СЧИТАЯ УСЛОВИЯ ПРОТЕКАНИЯ РЕАКЦИИ БЛИЗКИМИ К СТАНДАРТНЫМ:				
	БЛИЗКИМИ К СТАПДАГ ТПВМ. $\Delta H^0_{\text{ОБР.}}(\text{NH}_{3 \Gamma \text{A}3}) = -45,8 \text{ КДЖ/МОЛЬ}; \Delta H^0_{\text{ОБР.}}(\text{CO}_{2 \Gamma \text{A}3}) = -393,8 \text{ КДЖ/МОЛЬ},$				

	$\Delta H^0_{ODP.}[CO(NH_2)_2$ _{РАСТВОР}] = -333 КДЖ/МОЛЬ, $\Delta H^0_{ODP.}(H_2O_{KИДКОСТЬ})$ = - 286		
	КДЖ/МОЛЬ.		
	1) -133,6 кДж		
	2) +133,6 кДж		
	3) +267,2 кДж		
	4) -66,8 кДж 5) +66,8 кДж		
	1. Какие различают катализаторы?		
	2. Строение и роль ферментов в организме человека.		
	3. Отличие ферментов, как биологических катализаторов. 1. Каковы функции углеводов в организме?		
	2. Назовите и напишите наиболее широко известные дисахариды.		
для	1. Напишите формулу масляной кислоты.		
промежуточн	2. Напишите формулы лизина и глютамина и обозначьте углеродные атомы греческими		
ого контроля	буквами.		
(ПК)	3. Напишите трипептид аспарагил-валил-гистидин. 4. Что представляют собой белки (дайте определение)?		
	5. Назовите промежуточные и конечные продукты гидролиза белка.		
	б. Какие ковалентные связи участвуют в формировании структуры белка?		
	7. Какие связи разрушаются при денатурации?		
	8. Какие ткани богаты фибриллярными белками коллагенового типа?		
	9. Назовите трипептид СН2-СН-СО-NH-СН-СО-NH-СН-СООН		
	OH NH ₂ CH-CH ₃ CH ₂ -SH		
	CH ₂ -CH ₃		
	1. Как называется учение о витаминах?		
	2. Напишите формулу и эмпирическое название витамина А.		
	3. Укажите симптомы авитаминоза РР. 4. Какова биологическая роль витамина Е?		
	4. Какова оиологическая роль витамина Е: 5. Назовите производные витамина В ₆ , стоение, функции.		
	6. Напишите эмпирическое название витамина B ₃ .		
о. напишите эмпирическое название витамина ба. Где (в пищевых продуктах) содержится витамин В ₁ ?			
	Определите, верны или неверны утверждения и связь между ними:		
	В РЕАКЦИЯХ РАЗЛОЖЕНИЯ ЭНТРОПИЯ СИСТЕМЫ ВОЗРАСТАЕТ, Т.К. ПРИ ЭТОМ УМЕНЬШАЕТСЯ КОЛИЧЕСТВО ЧАСТИЦ В СИСТЕМЕ.		
	1) BBB 2) HHH 3) BHB 4) BBH 5) BHH 6) HBH 7) HHB 8) HBB		
	ЗАДАЧА. Требуется определить стандартную энтальпию реакции нейтрализации сильной кислоты сильной щелочью. Что необходимо иметь для проведения этого эксперимента? а) С помощью какого прибора можно провести это измерение? б) Какие реактивы должны быть в лаборатории?		
	в) Какая стеклянная измерительная посуда должна быть в лаборатории? г) Какова точность термометра, с помощью которого Вы будете измерять		
	температуру растворов?		
	д) По какой формуле Вы будете рассчитывать ΔH^0 реакции?		
	ЗАДАЧА. У пациента обнаружен в крови спирт C ₂ H ₅ OH. Мог ли он образоваться		
	в организме из CO ₂ и H ₂ O, как утверждает пациент, если		
	ΔG°_{o6p} . (C ₂ H ₅ OH) = - 278 кДж/моль; ΔG°_{o6p} . (H ₂ O) = - 286 кДж/моль;		
	$\Delta G_{\text{обр.}}^{\circ}$ (CO ₂) = - 394 кДж/моль.		
	а) Напишите уравнение образования C ₂ H ₅ OH из CO ₂ и H ₂ O;		
	б) Напишите уравнение Гиббса;		
	в) Что называется стандартной энергией Гиббса образования вещества?		
	г) По какой формуле рассчитывают $\Delta G^{\circ}_{ m peakuju}$?		
	д) Происходит ли в организме самопроизвольное образование C ₂ H ₅ OH из CO ₂ и H ₂ O?		
	ЗАДАЧА. Женщина, «соблюдая фигуру», съела вне плана в составе торта 180 г глюкозы. Сколько времени она должна стирать белье (расход энергии 543		

6.3. Оценочные средства, рекомендуемые для включения в фонд оценочных средств для проведения итоговой государственной аттестации.

Ситуационные задачи по химии.

7. Учебно-методическое и информационное обеспечение дисциплины (печатные, электронные издания, интернет и другие сетевые ресурсы).

7.1. Перечень основной литературы*:

$N_{\underline{0}}$	Наименование согласно библиографическим	Количество экземпляров	
	требованиям	На кафедре	В библиотеке
1.	Общая химия. Биофизическая химия. Химия биогенных элементов. Учебник для медицинских вузов. (Ю.А.Ершов, В.А.Попков, А.С.Берлянд и др. Ред.Ю.А.Ершов), 8 изд., 560 с М,: Высш.шк., 2010 г.		
2.	Практикум по общей и биоорганической химии. Учебное пособие для студентов медицинских вузов (Ред. В.А.Попков) М., АКАДЕМИЯ., 3 изд., 235 с., 2008 г.		
3.	Биоорганическая химия. Учебник. (Тюкавкина Н.А., Бауков Ю.И.). 7 изд., Дрофа. 2008 – 543 с.		
4.	Руководство к лабораторным занятиям по биоорганической химии, под ред. Н.А. Тюкавкиной, Дрофа, 2009 г., 5 изд. – 318 с.		
5.	Общая и биоорганическая химия. Учебник под ред. Берлянда А.С. и Попкова В.А. М, АКАДЕМИЯ, 2010.		

^{*}перечень основной литературы должен содержать учебники, изданные за последние 10 лет (для дисциплин гуманитарного, социального и экономического цикла за последние 5 лет), учебные пособия, изданные за последние 5 лет.

7.2. Перечень дополнительной литературы*:

$N_{\underline{0}}$	Наименование согласно библиографическим	Количество экземпляров	
	требованиям	На кафедре	В библиотеке
	Общая химия. Учебник для медицинских вузов. (В.А.Попков, С.А.Пузаков), 976 с М, ГЭОТАР Медиа, 2007 г.		
	Биофизическая и бионеорганическая химия (А.С. Ленский, И.Ю.Белавин, С.Ю.Быликин), М, МИА, 2008, - 416 с.		

^{*}дополнительная литература содержит дополнительный материал к основным разделам программы дисциплины.

7.3. Перечень методических рекомендаций для аудиторной и самостоятельной работы студентов:

paces	работы студентов.			
$N_{\underline{0}}$	Наименование согласно библиографическим	Количество экземпляров		
	требованиям	На кафедре	В библиотеке	
	Логинов П.В., Николаев А.А. Химические процессы //			
	Учебно-методическое пособие для иностранных			
	студентов (на англ. языке). – Астрахань: Изд-во			
	Астраханского ГМУ, 2017.			
	Николаев А.А. Кузнецова М.Г. Биоорганическая			
	химия. Методическое руководство к лабораторным			
	занятиям для иностранных студентов (на			
	французском. языке). – Астрахань: Изд-во			
	Астраханского ГМУ, 2017.			
	Д.Л. Луцкий, А.А.Николаев, А.М. Луцкая			
	«Комплексные соединения», Изд-во Астраханского			
	ГМУ, 2010.			

7.4. Перечень методических рекомендаций для преподавателей:

$N_{\underline{0}}$	Наименование согласно библиографическим		Количество	экземпляров
	требованиям		На кафедре	В библиотеке
	Органическая химия. Тесты по разделу			
	«Углеводороды». М.В. Плосконос, М.В. Ушакова			
	Астрахань: изд-во АГМ	И У, 2015		
	РАБОЧАЯ ТЕТРАДЬ І	ПО БИООРГАНИЧЕСКОЙ		
	ХИМИИ под ред. А.А.	Николаева Астрахань: изд-		
	во АГМУ, 2015			
	РАБОЧАЯ ТЕТРАДЬ І	ПО ОБЩЕЙ ХИМИИ под		
	ред. А.А.Николаева А	страхань: изд-во АГМУ,		
	2015	-		

8. Материально-техническое обеспечение дисциплины.

8.1. Перечень помещений * для проведения аудиторных занятий по дисциплине.

Использование учебной химической лаборатории, лабораторного и инструментального оборудования, учебных комнат для работы студентов, аудитории, оснащённые химическими лабораторными столами, аналитические весы, шаростержневые модели.

Мультимедийный комплекс (ноутбук, проектор, экран), телевизор, видеокамера, слайдоскоп видеомагнитофон, ПК, видео- и DVD проигрыватели, мониторы, мультимедийные презентации, таблицы. Наборы слайдов по различным разделам дисциплины. Набор таблиц по различным разделам дисциплины. Ситуационные задачи, видеофильмы. Доски.

*специально оборудованные помещения (аудитории, кабинеты, лаборатории и др.) для проведения лекционных занятий, семинаров, практических и клинико-практических занятий при изучении дисциплин, в том числе:

анатомический зал, анатомический музей, трупохранилище; аудитории, оборудованные симуляционной техникой; кабинеты для проведения работы с пациентами, получающими медицинскую помощь.

8.2. Перечень оборудования* для проведения аудиторных занятий по дисциплине.

Для обеспечения демонстраций учебного материала используется мультимедийный комплекс (ноутбук, проектор, экран), слайдоскоп, телевизионные экраны в 4-х учебных аудиториях. Во время чтения лекций применяются компьютерные презентации, выполненные в программах **Power Point** и **Adobe Photoshop CS 2.** Иллюстрации на прозрачных пленках для слайдоскопа выполнены в аналогичных программах и напечатаны на лазерном принтере, наборы химической посуды, реактивы, калориметры, иономеры, сталагмометры, вискозиметры, микроскопы, 2 лаборатории для научных исследований и лабораторных занятий на точных приборах, лаборантская для хранения и приготовления реактивов, центрифужная, виварий.

В образовательном процессе используются:

- 1. Компьютеры (6 шт.)
- 2. Мультимедийный комплекс
- 3. Проекторы «Asus» (2 шт)
- 4. Термостаты 2
- Центрифуги 1
- 6. Наборы слайдов, таблиц, мультимедийных наглядных материалов по различным разделам дисциплины. Видеофильмы.
- 7. Ситуационные задачи, тестовые задания по изучаемым темам.
- 8. Доски.

*лабораторное, инструментальное оборудование (указать, какое), мультимедийный комплекс (ноутбук, проектор, экран), телевизор, видеокамера, слайдоскоп, видеомагнитофон, ПК, видео- и DVD проигрыватели, мониторы, наборы слайдов, таблиц/мультимедийных наглядных материалов по различным разделам дисциплины, видеофильмы, доски и др..

9. Образовательные технологии в интерактивной форме, используемые в процессе преподавания дисциплины*:

- 1. Проблемные лекции.
- 2. Дискуссии на семинарский занятиях и заседаниях студенческого научного кружка.
- 3. Решение ситуационных задач в игровой форме.
- 4. Компьютерное тестирование.

*имитационные технологии: ролевые и деловые игры, тренинг, игровое проектирование, компьютерная симуляция, ситуация-кейс др.; неимитационные технологии: лекция (проблемная, визуализация и др.), дискуссия (с «мозговым штурмом» и без него), стажировка, программированное обучение и др.

Всего 20% интерактивных занятий от объема аудиторной работы.

- 9.1. Примеры образовательных технологий в интерактивной форме:
- 1. На практических занятиях широко используются такие интерактивные формы проведения занятий как проблемная лекция, тренинг, дискуссия и др.).
- 2. В конце изучения учебной дисциплины (модуля) проводится промежуточный контроль знаний с использованием тестового контроля.
- 9.2. Электронные образовательные ресурсы, используемые в процессе преподавания дисциплины:
 - 2. http://www.agmu.ru/biblioteka/yelektronnaia-biblioteka Электронные ресурсы библиотеки АГМУ:
 - 3. http://www.scsml.rssi.ru/ Центральная Научная Медицинская Библиотека (Электронные ресурсы)
 - 4. http://www.fbm.msu.ru/links/index.php?SECTION_ID=261 Государственное учебно-научное учреждение Факультет фундаментальной медицины Московского государственного университета имени М.В.Ломоносова (полнотекстовая иностранная литература журналы, книги).
 - 5. http://www.cochrane.ru/index.html Кокрановское Сотрудничество-это международная некоммерческая организация. Ее основная задача собирать новейшую, достоверную информацию о результатах медицинских вмешательств.
 - 6. http://www.infamed.com/book/ Медицинская книга (полнотекстовые отечественные журналы)
 - 7. http://www.medmatrix.org/MedicalMatrix (медицинские журналы в электронном формате)
 - 8. http://www.nlr.ru/nlr/location.htm РНБ (Российская национальная библиотека СПб.)
 - 9. http://www.nlr.ru/res/inv/ic_med/ Российская национальная библиотека
 - 10. http://www.iqlib.ru/ Электронная библиотека образовательных и просветительских изданий.
 - 11. http://content.nejm.org/ Английский ж-л по медицине (статьи, представленные в полном объеме)
 - 12. http://www.medicalstudent.com MedicalStudent.com является цифровая библиотека авторитетной медицинской информации и медицинским образованием для всех студентов медицины (иностранные полнотекстовые справочники, книги и журналы)
 - 13. http://www.slackinc.com/matrix Медицинская матрица (иностранные полнотекстовые книги, журналы, выход на мedline)