ОДИШЕЛАШВИЛИ ЛИАНА ГИВИЕВНА

СРАВНИТЕЛЬНАЯ ОЦЕНКА СПОСОБОВ ОБЛИТЕРАЦИИ ОСТАТОЧНЫХ ПОЛОСТЕЙ ПОСЛЕ ОТКРЫТОЙ ЭХИНОКОККЭКТОМИИ (ЭКСПЕРИМЕНТАЛЬНО-КЛИНИЧЕСКОЕ ИССЛЕДОВАНИЕ)

3.1.9 – хирургия

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата медицинских наук

Астрахань - 2021

Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего образования «Астраханский государственный медицинский университет» Министерства здравоохранения Российской Федерации.

Научный руководитель:

ЗУРНАДЖЬЯНЦ Виктор Ардоваздович, Заслуженный деятель науки РФ, доктор медицинских наук, профессор

Официальные оппоненты:

МЕДЖИДОВ Расул Тенчаевич - доктор медицинских наук, профессор, кафедра общей хирургии Федерального государственного бюджетного образовательного учреждения высшего образования «Дагестанский государственный медицинский университет» Министерства здравоохранения Российской Федерации, заведующий кафедрой.

ПРУДКОВ Михаил Иосифович - Заслуженный врач РФ, доктор медицинских наук, профессор, кафедра хирургии, колопроктологии и эндоскопии Федерального государственного бюджетного образовательного учреждения высшего образования «Уральский государственный медицинский университет» Министерства здравоохранения Российской Федерации, заведующий кафедрой.

редущая организация. Федеральное государственное оюджет
юе образовательное учреждение высшего образования «Ростовский
осударственный медицинский университет» Министерства здраво
хранения Российской Федерации, г. Ростов-на-Дону.
Защита состоится «» 2021 года в часог
на заседании совета 21.2.003.01 по защите диссертаций на соискание
чёной степени кандидата наук, на соискание учёной степени доктора
аук при ФГБОУ ВО Астраханский ГМУ Минздрава России (414000
Россия, г. Астрахань, ул. Бакинская, 121).
С диссертацией можно ознакомиться в библиотеке и на сайте
uttp://astgmu.ru ФГБОУ ВО Астраханский ГМУ Минздрава России
Автореферат разослан «» 2021 г.
Jчёный секретарь
иссертационного совета
с.м.н., доцент Севостьянова Ирина Викторовна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. Эхинококковая болезнь широко распространена во многих странах мира. По данным ВОЗ в мире ежегодно регистрируется более 1 млн случаев заболевания эхинококкозом. Подробный анализ уровня заболеваемости эхинококкозом населения России выявил превышение среднероссийских показателей в 21 субъектах Российской Федерации, в том числе в Астраханской области – в 4,1 раза с выявлением специфических антител к эхинококку (5,8%) в крови пациентов (Елканова 3.3., 2010; Шодмонов И.Ш. и соавт., 2015; Велиева Т.А., 2015; Аракельян Р.С. и соавт., 2017).

Радикальным методом лечения эхинококкоза печени остается хирургический (Вафин А.З. и соавт., 2010; Прудков М.И. и соавт., 2011; Кучин Ю.В. и соавт., 2013; Черкасов М.Ф. и соавт., 2016; Меджидов Р.Т. и соавт., 2020; Nunnari G. et al, 2012; Ozgur B. et al, 2016). К известным радикальным способам хирургического лечения эхинококкоза относятся: перицистэктомия, закрытая и открытая эхинококкэктомия, резекция печени (Альперович Б.И., 2010; Скипенко О.Г. и соавт., 2011). Перицистэктомия является наиболее радикальным способом и экономически выгодным оперативным вмешательством в связи с уменьшением послеоперационного койко-дня (Вишневский В.А., 2013; Мусаев Г.Х., 2018). Однако, данный способ в ряде случаев при эхинококковых кистах больших размеров, расположенных вблизи магистральных сосудов и билиарных протоков довольно опасен, в связи с высоким риском развития ранних и поздних послеоперационных осложнений (Прудков М.И. и соавт., 2011). Тем не менее, при использовании альтернативных способов эхинококкэктомии, угрожающие жизни пациента ситуации возможно избежать. Но при этом, хирурги сталкиваются с другой проблемой, а именно, длительно незаживающие остаточные полости (ОП), приводящие к вторичным гнойным осложнениям, образованиям стойких свищей (Джаборов А.И., 2014; Михин И.В. и соавт., 2014; Шевченко Ю.Л., 2018).

Существующие методы закрытия ОП далеко не всегда приносят удовлетворительные результаты из-за возникновения серьезных осложнений (рецидивы, желчные свищи, поддиафрагмальные и подпеченочные абсцессы), приводящих к повторным оперативным вмешательствам, требующих длительного восстановительного периода, что приводит к увеличению койко-дня, затрат на лечение, что в свою очередь увеличивает срок нетрудоспособности и риск инвалидизации больных (Черкасов М.Ф.,2004; Амонов Ш.Ш. и соавт., 2011; Скипенко О.Г. и соавт., 2011; Третьяков А.А. и соавт., 2012; Мадаминов Э.М.,

2014; Пахнов Д.В. и соавт., 2014; Пантелеев В.С. и соавт., 2015; Меджидов Р.Т. и соавт., 2020; Nasseri-Moghaddam S. et al, 2006).

Таким образом, поиск нового способа ликвидации ОП после открытой эхинококкэктомии является актуальной задачей.

Степень разработанности темы исследования

В настоящее время представлено большое число исследований отечественных и зарубежных авторов, посвященных методам хирургического лечения эхинококкоза. Изученные данные литературы свидетельствуют о противоречивых результатах лечения, не позволяющих определить преимущество одного метода над другим (Лотов А.Н., 2010; Шевченко Ю.Л. и соавт., 2016; Мельник И.В. и соавт., 2018; Ниязов Б.С., 2018; Шамсиев Ж.А. и соавт., 2018; Шабунин А.В. и соавт., 2021; Fatin R. et al., 2012). Однако, стоит отметить об ограниченных данных, посвященных поиску оптимальных способов ликвидации ОП после открытой эхинококкэктомии.

При этом, одним из главных направлений в данной области – разработка консервативного химического способа, позволяющего за короткий срок вызвать облитерацию ОП и исключить влияние его на функциональные системы организма.

С учетом литературных данных, проблема консервативного лечения ОП указывает на неудовлетворительные результаты, несмотря на внедрение новых подходов к их лечению, с точки зрения осложнений, как в раннем, так и в позднем послеоперационном периоде.

Это свидетельствует о недостаточно высокой эффективности предложенных способов ликвидации ОП после открытой эхинококкэктомии, которые не решают вопрос о сокращении длительности нахождения больного в стационаре и сроков его нетрудоспособности (Абдисаматов Б.С.,2016; Ахмедов И.Г. и соавт. 2016; Айтназаров М.С. и соавт.2017; Каниев Ш.А. и соавт.2018; Мельник И.В. и соавт.2018; Ботиралиев А.Ш. и соавт., 2021).

Цель исследования: Разработать и обосновать в условиях эксперимента и внедрить в клиническую практику способ химической облитерации остаточных полостей 10% водным раствором повидонйода (Бетадин) после открытой эхинококкэктомии.

Задачи исследования:

1. Обосновать возможность применения 10% водного раствора повидон-йода (Бетадина) для химической облитерации остаточных полостей после открытой эхинококкэктомии.

- 2. Разработать способ моделирования «остаточной» полости в эксперименте.
- 3. Провести сравнительную характеристику в эксперименте применения 10% водного раствора повидон-йода (Бетадина) с 0,5% спиртовым раствором хлоргексидина и 5% спиртовым раствором йода для химической обработки «остаточных» полостей с изучением результатов лабораторных, инструментальных и патоморфологических исследований.
- 4. Дать клиническую оценку применения 10% водного раствора повидон-йода (Бетадина) для химической облитерации остаточных полостей после открытой эхинококкэктомии и выработать практические рекомендации.

Научная новизна исследования:

Впервые дано экспериментальное и клиническое обоснование применения 10% водного раствора повидон-йода (Бетадина) для облитерации остаточной полости после эхинококкэктомии (патент РФ на изобретение № 2551189 от 16.04.14).

Впервые разработан способ моделирования «остаточной» полости (патент РФ на изобретение № 2734055 от 12.10.20) для проведения сравнительной оценки процессов её облитерации после применения: 10% водного раствора повидон-йода (Бетадина); 0,5% спиртового раствора хлоргексидина и 5% спиртового раствора йода.

Даны результаты клинического применения 10% водного раствора повидон-йода (Бетадина) для обработки остаточных полостей у больных после открытой эхинококкэктомии, выработаны показания и даны практические рекомендации.

Теоретическая и практическая значимость работы

Экспериментальными исследованиями выявлена эффективность использования 10% водного раствора повидон-йода (Бетадина) для облитерации «остаточной» полости, которая позволила использовать его в клинической практике для лечения больных после открытой эхинококкэктомии.

Разработанный способ прост в использовании, не требует дополнительного и специального оборудования и материалов, обеспечивает быструю облитерацию остаточной полости, позволяет предотвратить вторичные осложнения, сократить послеоперационный койкодень и сроки нетрудоспособности.

Методология и методы исследования

Основа методологии проведенного исследования заключалась в системном применении методов научного познания. Сбор данных и

обработка полученных результатов выполнялись в соответствии с разработанным дизайном исследования. В работе применены экспериментальные, лабораторные, инструментальные, клинические и статистические методы. Исследование соответствовало принципам и правилам доказательной медицины.

Основные положения, выносимые на защиту:

Разработанный способ моделирования «остаточных» полостей в эксперименте позволяет провести сравнительную оценку некоторых способов их химической облитерации.

Обоснована возможность включения 10% водного раствора повидон-йода (Бетадина) в сравнительную экспериментальную группу.

Сравнительная лабораторная, инструментальная и патоморфологическая оценка некоторых способов химической облитерации «остаточных» полостей в эксперименте показала эффективность 10% водного раствора повидон-йода (Бетадина).

10% водный раствор повидон-йода (Бетадина), являясь антисептическом препаратом, предупреждает развитие вторичных гнойных осложнений и не обладает токсическим действием на функциональные системы организма в период его применения.

Применение 10% водного раствора повидон-йода (Бетадина) в клинической практике у больных после открытой эхинококкэктомии позволяет сократить сроки облитерации остаточных полостей.

Степень достоверности и апробация результатов исследования. Достоверность полученных данных обусловлена применением адекватных научных методов исследования, анализом широкого спектра отечественной и зарубежной научной литературы, достаточным количеством экспериментального и клинического материала, включенных в исследование; использованием оборудования и расходных материалов отечественных и зарубежных производителей, находящихся в исправном техническом состоянии, статистической обработкой полученных данных, логичностью и обоснованностью выводов, полученных на основании результатов исследования.

Основные положения и выводы диссертации доложены и обсуждены на V Международном молодежном медицинском конгрессе (Санкт-Петербург, 2015), на III Международной конференции Прикаспийских государств «Актуальные вопросы современной медицины» (Астрахань, 2018), на Общероссийском хирургическом Форуме-2020 (Москва, 2020), на IV Международной конференции Прикаспийских государств «Актуальные вопросы современной медицины» (Астрахань, 2020).

Апробация диссертации проведена на совместном заседании проблемной комиссии «Хирургические болезни» и кафедр хирургического профиля ФГБОУ ВО Астраханский ГМУ Минздрава России и врачей ЧУЗ «Клиническая больница «РЖД - Медицина» города Астрахань», ГБУЗ АО «Городская клиническая больница №3 им. С.М. Кирова» г. Астрахани, 30 июня 2021 г.

Внедрение результатов исследования. Разработанный способ ликвидации остаточной полости после открытой эхинококкэктомии внедрен в работу хирургических отделений лечебнопрофилактических учреждений г. Астрахани: «Астраханской клинической больницы» Федерального государственного бюджетного учреждения здравоохранения «Южный окружной медицинский центр Федерального медико-биологического агентства» России, Государственного бюджетного учреждения здравоохранения Астраханской области Александро-Мариинской областной больницы, Государственного бюджетного учреждения Астраханской области «Городская клиническая больница №3 им. С.М. Кирова».

Материалы данного исследования используются в учебном процессе для подготовки студентов и проведения практических занятий с клиническими ординаторами и аспирантами ФГБОУ ВО «Астраханский медицинский университет» Минздрава Российской Федерации.

Публикации. По теме диссертации опубликовано 16 научных работ, из которых 7 в рецензируемых журналах, рекомендованных ВАК, 2 статьи в журналах, цитируемых в WOS и 1 в Scopus. Получено 2 патента РФ на изобретение.

Личный вклад автора в исследование. Диссертант принимал личное участие на всех этапах представленного исследования. Вместе с научным руководителем была запланирована научная работа, сформулированы - цель, задачи, определены параметры дизайна. Автор принимал личное участие в организации и проведении экспериментально-клинических исследований в соответствии с разделами диссертации; в литературном поиске по изучаемой теме, статистической обработке и интерпретации полученных результатов. Диссертантом написана рукопись и подготовлены научные публикации по представленной теме.

Объём и структура диссертационной работы. Диссертация изложена на 132 страницах компьютерного текста, состоит из введения, 5 глав: «Обзор литературы», «Обоснование применения нового способа облитерации остаточных полостей после открытой эхинококкэктомии», «Материалы и методы исследования», «Результаты экспе-

риментальных исследований», «Характеристика клинического материала»; заключения, выводов, практических рекомендаций, списка сокращений и библиографического указателя.

Список литературы включает 165 источников, из которых 108 работ – отечественных и 57 – зарубежных авторов. Работа содержит 21 таблицу, иллюстрирована 52 рисунками.

Связь с планом научных исследований

Диссертация выполнена в рамках комплексной темы НИР: «Разработка научно-обоснованного лечебно-диагностического комплекса у больных с гидатидным эхинококкозом», номер государственной регистрации АААА-А20-120012090173-0 в соответствии с планом научно-исследовательской работы ФГБОУ ВО Астраханский ГМУ Минздрава России.

Диссертационная работа соответствует паспорту специальности 3.1.9 — Хирургия. Область исследований: «Экспериментальная и клиническая разработка методов лечения хирургических болезней и их внедрение в клиническую практику».

СОДЕРЖАНИЕ РАБОТЫ

Материалы и методы исследования

Для достижения цели исследования в качестве химического препарата для облитерации остаточных полостей после открытой эхинококкэктомии выбран 10% водный раствор повидон-йода (Бетадин), который при сравнении с другими химическими соединениями сохраняет антисептические свойства, не приводит к развитию резистентности, обладает водной растворимостью, не токсичен, не вызывает аллергические реакции и устойчив при хранении. Действие 10% водного раствора повидон-йода обуславливается его фармакологическими свойствами, где активный йод высвобождаясь из комплекса с поливинилпирролидоном, при контакте с биологическим материалом образует с белками бактериальной клетки йодамины, приводящие микроорганизмы к их гибели (Ершова А.К., 2011) (рис.1).

Рис. 1. Химическая структура повидон-йода.

Кроме того, нами в эксперименте доказано, что 10% водный раствор повидон-йода (Бетадина) оказывает раздражающий эффект на биологическую ткань, инициируя «эффект ожога», что запускает ис-

кусственный процесс воспаления и рост соединительной ткани (Одишелашвили Γ .Д. и соавт. 2014, 2015).

В связи с этим, для подтверждения эффективности 10% водного раствора повидон-йода (Бетадина) возникла необходимость проведения сравнительной оценки его с 0,5% спиртовым раствором хлоргексидина и 5% спиртовым раствором йода, что явилось исходным моментом для выполнения данной работы.

Дизайн исследования включал экспериментальную и клиническую часть.

Экспериментальная часть работы

Эксперименты выполнены в трех сериях опытов на 21 кролике породы «Шиншилла», разного пола, массой 5 ± 0.3 кг, в возрасте от 1 до 2 лет, которым проводилось моделирование «остаточной» полости (ОП) из брюшины с их последующей обработкой: в первой серии (7 кроликов) -10% водным раствором повидон-йода (Бетадин); во второй серии (7 кроликов) - 0,5% спиртовым раствором хлоргексидина и в третьей серии (7 кроликов) - 5% спиртовым раствором йода. Результаты оценивались на 1,5,10,15,20,25,30 сутки после операции.

Животные в течение 7 дней до операции находились в условиях вивария для адаптации. В качестве премедикации применяли 1%-1 мл раствор димедрола. Через 20 минут, внутримышечно вводился ксилазин 2%-2 мл на 5 кг массы тела. Под наркозом животным производилась срединная лапаротомия и моделирование ОП, которое заключалось в выкраивании лоскута париетальной брюшины, размерами 10,5х5,5 см, при условии сохранения питающей ножки (рис.2).

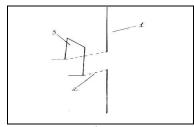


Рис. 2. Выкраивание лоскута брюшины на питающей ножке. 1— передняя брюшная стенка; 2— брюшина; 3— лоскут брюшины.

Затем, узловыми швами соединяли свободные края выкроенного лоскута брюшины до силиконовой дренажной трубки диаметром 2 мм, свободный конец которой выводился подкожно, на спину животных (рис.3).

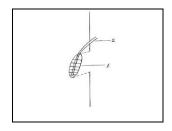


Рис. 3. Формирование модели «остаточной» полости. 1 –замкнутая полость; 2 – дренажная трубка.

Размеры создаваемой модели ОП составлял 5x5x2 см с объемом=26 мл. Внешний вид модели «остаточной» полости представлен на рисунке 4.

Рис. 4. Внешний вид модели «остаточной» полости

Всем 21 животным создавалось по 3 модели «остаточной» полости (ОП), с идентичными размерами и объемом для «чистоты» опытов и получения достоверных результатов.

Второй этап экспериментов заключался в облитерации созданных «остаточных» полостей с применением химических средств.

В послеоперационном периоде, с первых суток после операции, в 1 серии экспериментов модели ОП обрабатывались 10% водным раствором повидон-йода (Бетадина) (7 опытов); во второй серии - 0,5% спиртовым раствором хлоргексидина (7 опытов), в третьей серии - 5% спиртовым раствором йода (7 опытов). Введение препарата в «остаточную» полость выполнялось каждый день, двукратно, с экспозицией 15 минут до их полной облитерации. Каждый опыт включал обработку 3 остаточных полостей в каждой серии экспериментов. Мониторинг

репаративных изменений в «остаточных» полостях производился в установленные сроки исследования: 1, 5, 10, 15, 20, 25, 30 сутки после операции.

Лабораторные исследования проводились во всех 3 сериях экспериментов. В указанные сроки исследовались следующие показатели: эритроциты, гемоглобин, лейкоциты, СОЭ, АЛТ, АСТ, креатинин, мочевина. Данные показатели были выбраны с целью выяснения объема кровопотери, характера воспалительного процесса в остаточных полостях и токсического воздействия на функциональные системы организма животного. Кровь забиралась из ушной вены скарификатором в объеме до 5 мл у каждого кролика в микроцентрифужную пробирку для последующего центрифугирования и определения показателей биохимического анализа крови, а также в стеклянные пробирки до 5 мл для общего анализа крови. Референтные значения нормы показателей общего и биохимического анализа крови у кроликов устанавливались с помощью руководства «Биохимия животных» (Конопатов Ю.В., Васильева С.В., ISBN:978-5-8114-1823-7).

Подопытным животным после операции производили прижизненное ультразвуковое исследование и фистулографию созданных «остаточных» полостей.

УЗИ проводилось на аппарате MINDRAY. Использовались ультразвуковые датчики: линейный (с частотой сканирования 7,5 МГц), конвексный (с частотой сканирования 3,5 МГц). Сформированную модель ОП визуализировали в виде эхонегативного пространства с чёткими гиперэхогенными контурами. В ходе УЗИ «остаточных» полостей уточняли их продольные и поперечные размеры, контуры, структуру и включения для оценки динамики их облитерации в сроки: 1,5,10,15,20,25,30 сутки после операции.

Для определения объема, созданных ОП применялась математическая формула. Так как форма сформированных ОП близка к сфероиду, объём полости вычислялся по формуле: Объем = $4/3 \times \pi abc$, где арадиус первого по оси **x**, b-радиус по оси **y**, c-радиус по оси **z** (рис.5).

Рис. 5. Трехмерный макет «остаточной» полости.

Фистулография проводилась на цифровом рентгеновском аппарате «Listem REX-525R». Во всех сериях экспериментов по дренажным трубкам, в модели ОП, вводился контраст «Ультраст», разведенный на физиологическом растворе 3:1, после чего осуществлялась фистулография в установленные сроки: 1,5,10,15,20,25,30 сутки для визуализации и уточнения динамики изменения объема ОП.

Под наркозом, в каждом опыте, производилась релапаротомия и иссечение моделей ОП на 1,5, 10, 15, 20, 25 и 30 сутки для их патоморфологической оценки. После повторных оперативных вмешательств, животные пробуждались и переводились обратно в вивариум для наблюдения.

Так, при оценке макроскопической картины модели ОП визуально обращали внимание на взаимоотношение модели «остаточной» полости с окружающими органами, наличия в них экссудата, изменения брюшины, выраженность регенераторно-воспалительного и спаечного процесса в зоне операции, картину раневых поверхностей «остаточных» полостей с характеристикой их форм, окраски, консистенции, наличия фибринозного налета, экссудата в полости после их извлечения (с последующим фотографированием). Объем полостей измерялся нагнетанием физиологического раствора посредством шприца 10 мл.

Репаративная регенерация в моделях ОП изучалась с помощью гистологических исследований. Гистологические срезы окрашивались гематоксилином и эозином, по Ван Гизон с целью визуализации процессов облитерации в препаратах и для оценки воспалительных реакций в моделях ОП. Микроскопические исследования проводились с помощью световой микроскопии с увеличением x50.

Клиническая часть работы

Полученные положительные результаты в эксперименте позволили применить разработанный способ облитерации остаточных полостей в клинической практике у 53 больных: у 50 - после открытой эхинококкэктомии и 3 больных после лапароскопически ассистированного способа эхинококкэктомии с дренированием остаточной полости. Исследуемая группа больных распределялась по полу, возрасту, локализации и размерам эхинококковых кист. При характеристике клинического материала определены критерии «включения» и «исключения».

Критериями «включения» являлись: согласие пациентов на участие в исследовании; пациенты с эхинококкозом печени. Критерии «исключения»: пациенты с эхинококкозом другой локализации; пациенты с нагноившимися эхинококковыми кистами; пациенты с отяго-

щенным аллергологическим анамнезом (гиперчувствительность к йодсодержащим средствам); иные способы эхинококкэктомии.

Исследования осуществлялись с помощью клинических, лабораторных и инструментальных методов обследования.

Лабораторные методы включали в себя общий анализ крови, СОЭ, биохимический анализ крови (показатели АЛТ, АСТ, креатинин и мочевина).

Инструментальные методы исследования включали ультразвуковое исследование (УЗИ) остаточной полости, КТ органов брюшной полости и выполнялись в динамике у каждого больного для определения сроков достижения облитерации.

На 3, 7, 14 сутки после операции выполнялось УЗИ на аппаратах ACCUVIX XQ, Aloka-500, Apogee 3500, Logiq 500, Logiq 700, Siemens Omnia по стандартным общепринятым методикам с электронными датчиками на 3,5 и 7,5 М Γ ц.

Компьютерная томография органов брюшной полости выполнялась на 7, 14, 20 сутки после операции для уточнения динамики редукции остаточной полости в послеоперационном периоде. Исследования проводились на аппаратах «Optima CT540», Toshiba Aquilion 64.

Статистическая обработка результатов исследования

Обработка результатов исследований производилась при помощи статистических программ: StatPlus:mac 7.5 и Statistica 10.0. Использовались функции описательной статистики: определялись объем выборки (п), Медиана (Ме), 5% и 95% процентилей (Рс₀₅-Рс₉₅), в связи с отсутствием нормального распределения данных. Для выявления значимости различий одного признака в зависимости от другого, анализа качественных признаков через исследование их частот применялись непараметрические методы статистического исследования, а именно, таблицы сопряженности с определением критерия согласия хи-квадрат (критерий Пирсона), U-критерий Манна-Уитни, Т-критерий Уилкоксона. Результаты считались статистически значимыми при р<0,05.

Критерий согласия хи-квадрат (критерий Пирсона) применялся для единовременного сравнения результатов исследований трех серий экспериментов между собой. Критерий Манна-Уитни применялся для парного сравнения результатов экспериментальных исследований (по-казателей общего и биохимического анализа крови, объемов моделей ОП) в сериях экспериментов: 1 серии попеременно со второй и третьей; второй и третьей; второй и третьей серий экспериментов. Также, для оценки статистической значимости полученных результатов внутри каждой серии экспериментов, при помощи критерия Уилкоксона проводилось срав-

нение показателей между сроками исследования: до операции с 1 сутками после операции; 1 сутки после операции с 5 сутками; 5 сутки с 10 сутками, 10 сутки с 15 сутками после операции; 15 сутки с 20 сутками; 20 сутки с 25; 25 сутки с 30.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

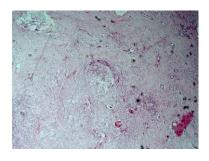
Результаты экспериментальных исследований

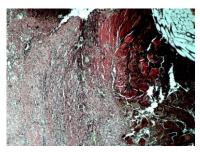
В ходе проведенных экспериментальных лабораторных исследований было выявлено:

- умеренный лейкоцитоз 12,1[8,53;13,55] на протяжении 5 суток после операции с нормализацией значений к 10 суткам после операции 8,8[7,93;9,3] в 1 серии экспериментов;
- выраженный лейкоцитоз на 5 (X^2 =0,43, p=0,8; X^2 =9,57, p=0,008), 10 (X^2 =10,71, p=0,004; X^2 =10,7, p=0,005),15 (X^2 =14,14, p=0,0008; X^2 =14,15, p=0,0009) сутки после операции с тенденцией к уменьшению к 30 суткам после операции (X^2 =10,7, p=0,005; X^2 =14,14, D=0,0009). Полученные данные указывают на продолжительность фазы экссудации в ОП (D<0,05);
- -значение показателей эритроцитов и гемоглобина оставались в норме, что обуславливало отсутствие гематотоксического действия вводимых в модели «остаточной» полости растворов;
- -в 1 серии экспериментов не выявлены изменения значений трансаминаз (АЛТ и АСТ), уровня креатинина и мочевины на всех сроках исследования, что обуславливало отсутствие гепатотоксического и нефротоксического влияния на организм лабораторных животных. Повышение уровня трансаминаз АСТ 44,0[41; 47,25] и АЛТ 65,0[64,0; 73,3] с 5 суток после операции с минимальной тенденцией к снижению на 25 и 30 сутки во второй серии экспериментов, косвенно указывало на гепатотоксичность 0,5% спиртового раствора хлоргексидина при его длительном применении (p<0,05);
- повышение АЛТ (49,0[37,5; 50,0] 91,0[88,0; 96,0]), АСТ (21[18,5; 22,5] 61,0[50,5; 68,5]) и креатинина (130,3[108,3;133,7] 150,3[147,4; 153,5]) на всех сроках исследования после операции свидетельствовало о токсическом влиянии 5% спиртового раствора йода на функциональные системы организма лабораторных животных (p<0,05).

УЗИ и фистулография моделей «остаточных» полостей выполнялись на 1, 5, 10, 15, 20, 25, 30 сутки после операции, с целью визуализации динамики процесса облитерации.

Во всех сериях экспериментов на 1 сутки после операции модели «остаточной» полости прежних объемов. На 5, 10 сутки - наблюда-


лись процессы облитерации, которые активно происходили в 1 серии экспериментов (5 сутки-19,5[19,3;19,7] мл; 10 сутки - 10,7[10,5;10,9] мл) по сравнению со второй (5 сутки - 25,1[25,1;25,4] мл; 10 сутки - 20[18,5;20,5] мл) и третьей (5 сутки - 21,6[20,5;21,8] мл; 10 сутки - 17,6[17,4;17,9] мл) сериями экспериментов. На 15 сутки после операции сравнительная оценка между тремя сериями прекращена в связи с достижением полной облитерации в 1 серии экспериментов. Далее, с 15 суток после операции продолжена сравнительная оценка объемов между 2 и 3 сериями экспериментов. В третьей серии экспериментов процесс облитерации протекал активнее, чем во второй серии. На 15 сутки в третьей серии объем составил 13,2[12,7;14,6] мл, тогда как во второй серии - 16,1[16,0;16,25] мл. В третьей серии экспериментов, в опыте №6 облитерация была достигнута на 25 сутки, в опыте №7 - на 30 сутки. Во второй серии экспериментов облитерация не наступила и на 30 сутки объем моделей ОП составил 3,14[2,92;3,37] мл.


На 1,5,10,15,20,25,30 сутки под наркозом выполнялась релапаротомия при которой оценивалось состояние брюшной полости, внешняя поверхность «остаточных» полостей, после чего модели ОП иссекались и оценивалась макроскопическая картина внутренней поверхности моделей ОП с последующей микроскопией. Определялись макроскопические и микроскопические признаки облитерации, степень патологических изменений в моделях ОП. После релапаротомии кролики оставались живыми и перемещались в вивариум.

В трех сериях экспериментов, в 1 сутки после первой операции, при релапаротомии наблюдалась идентичная макроскопическая картина. При микроскопии: мягкие ткани с воспалительными инфильтратами, наиболее выраженными в зоне хирургических швов. В 1 серии экспериментов на 5 сутки, при релапаротомии макроскопическая картина, следующая: в моделях «остаточной» полости визуализируется тонкий красный гранулирующий слой, без налета фибрина. Скудный серозный экссудат. При микроскопии: пролиферация лимфогистеоцитарных элементов. Во 2 и 3 серии экспериментов стенки остаточных полостей утолщены до 1,5 см, отечны, внутренняя поверхность моделей ОП - гиперемирована, имеется экссудат. При микроскопии: обширные зоны некроза, с воспалительными инфильтратами в зоне хирургических швов.

К 15 суткам после операции в 1 серии экспериментов достигается полная облитерация моделей ОП: при микроскопии: визуализация зрелой рубцовой ткани с единичными участками инкапсуляции и воспаления (рис.5 а, б), тогда как в 2 и 3 сериях - мягкие ткани с обшир-

ными участками некроза, преобладанием экссудативных процессов со сформированными воспалительными инфильтратами.

а б

Рис. 5. Первая серия, опыт №4. а) Окраска гематоксилином и эозином. б) Окраска по Ван Гизон. Ув. х 50

В 2 и 3 сериях на 20 сутки, после релапаротомии - при микроскопии определялись признаки организации рубцовой ткани, а на 25 и 30 сутки после операции в третьей серии - замещение моделей ОП соединительной тканью с единичными очагами воспаления, выраженной макрофагальной реакцией, зонами инкапсуляции, тогда как во 2 серии экспериментов облитерация не наступала: сохранялись воспалительные инфильтраты в зоне хирургических швов и формировались очаги рубцовой ткани.

Таким образом, в ходе патоморфологической оценки получены следующие результаты:

- 1. При обработке модели ОП 10% водным раствором повидон-йода (Бетадина) процесс формирования соединительной ткани форсируется, воспалительные реакции в полости умеренно выражены в 1 и 5 сутки после операции. Облитерация полости достигается, в среднем, на 15 сутки после операции во всех опытах.
- 2. При анализе влияния 0,5% спиртового раствора хлоргексидина на внутреннюю поверхность модели «остаточной» полости отмечались: медленный темп формирования соединительной ткани. Организация соединительный ткани наступала на 30 сутки после операции.
- 3. При оценке воздействия на внутреннюю поверхность модели ОП 5% спиртового раствора йода отмечалось преобладание выраженной воспалительной реакции над организацией соединительной ткани, которая наступала на 20-25 сутки после операции.

Результаты клинических исследований

Анализ клинического материала показал, что чаще всего, эхинококкоз встречался в возрасте от 41 до 50 лет - 32 (63%). Но, статистической значимости данного критерия распределения пациентов не выявлено (p=0,53; X^2 =0,4).

Наибольшее количество кист было в правой доле печени -40 (75%), в V сегменте-26 (49%), наименьшее количество - в VIII сегменте -1 (2%). Для сравнения, в левой доле печени -13 (25%), особенно, в III сегменте -9 (17%) (рис.6).

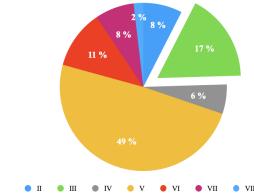


Рис. 42. Локализация эхинококковых кист в зависимости от сегментарного строения печени

Наибольшее количество остаточных полостей встречалось размерами до 10 см - 35 из 53 случаев (66% от 100%).

С первых суток после операции ежедневно, двукратно, производилась обработка остаточной полости 10% водным раствором повидон – йода (Бетадин) с экспозицией 15 минут. Процедуру выполняли до полной ликвидации остаточной полости. Сроки облитерации определялись размерами остаточной полости и наступали в среднем на 14 ± 1,5 сутки после операции. Увеличение АЛТ(ALAT) и АСТ(ASAT) достигало своего максимального уровня через 1 сутки после операции соответственно: АЛТ - 69,0 [59,0; 72,1] Ед/л, АСТ - 65,0 [50,5; 67,3] Ед/л, нормализация которых наступала на 7 сутки после операции: АЛТ - 31,0 [29,81; 35,21] Ед/л, АСТ- 30,2 [28,3;30,2] Ед/л. После проведенного анализа показателей АЛТ и АСТ, был выявлен уровень статистической значимости сравнения показателей АЛТ и АСТ до операции и 1 суток после операции (АСТ: T=211,0, p=0,03; АЛТ: T=13,2, p=0,001); 3 суток после операции и 7 суток после операции (АСТ: T=0,0, p=0,009; АЛТ: T=0,0, p=0,004) (табл.1).

Таблица 1 - Мониторинг показателей биохимического анализа крови

Показатели биохимического анализа крови	Сроки сравнения		Критерий Уилкоксона (Т) р-значение
	До операции	1сутки после	
A COTE (F. /)	10.0 [1.6 45.01.05]	операции	T 211 0 002
АСТ (Ед/л)	18,0 [16,45;21,25]	65,0[50,5;67,3]	T=211,0, p=0,03
АЛТ (Ед/л)	25,0 [21,5;29,3]	69,0[59,0;72,1]	T=13,2, p=0,001
Креатинин (мкмоль /л)	81,0[72,6;91,75]	68,0[62,5;73,6]	T=302,0p=0,005
Мочевина (ммоль /л)	4,5[3,22;5,41]	2,8[2,2;3,1]	T=3,0, p=0,7
	1сутки после	3 сутки после	
	операции	операции	
АСТ (Ед/л)	65,0[50,5;67,3]	61,0[55,7;64,3]	T=286,5,
. ,			p=0,0004
АЛТ (Ед/л)	69,0[59,0;72,1]	62,0[55,0;60,1]	T=0,0, p=7,6
Креатинин (мкмоль /л)	68,0[62,5;73,6]	104,0[80,15;109,0]	T=205,0,
,			p=0,0009
Мочевина (ммоль /л)	2,8[2,2;3,1]	5,7[5,45;6,4]	T=205,0,
·			p=0,0009
	3 сутки после	7 сутки после	
	операции	операции	
АСТ (Ед/л)	61,0[55,7;64,3]	30,2[28,3;30,2]	T=0,0, p=0,009
АЛТ (Ед/л)	62,0[55,0;60,1]	31,0[29,81;35,21]	T=0,0, p= 0,004
Креатинин (мкмоль /л)	104,0[80,15;109,0]	54,3[48,3;65,4]	T=188,5, p=
			0,00004
Мочевина (ммоль /л)	5,7[5,45;6,4]	3,23[2,91;3,16]	T=188,5,
,			p=0,0004
	7 сутки после	14 сутки после	
	операции	операции	_
АСТ (Ед/л)	30,2[28,3;30,2]	21,4[18,5;29,3]	T=496,0, p=0,05
АЛТ (Ед/л)	31,0[29,81;35,21]	25,34[21,42;28,15]	T=98,0, p=1,18
Креатинин (мкмоль /л)	54,3[48,3;65,4]	90,3[82,0;100,0]	T=404,5, p=0,04
Мочевина (ммоль /л)	3,23[2,91;3,16]	3,8[3,4;4,4]	T=404,5, p=0,04

Примечание: Т-критерий Уилкоксона для сравнения двух независимых выборок. Статистическая значимость при p < 0.05

Остальные функциональные показатели не изменялись. Креатинин и мочевина не претерпевали изменений, что доказывает нетоксичность данного препарата на функциональные системы организма.

Помимо лабораторных исследований данная группа пациентов подвергались инструментальному обследованию.

По данным УЗИ остаточных полостей: на 3 сутки после операции визуализировались полости (размерами $50,5\pm25,1x58,6\pm10,1x30,1\pm15,0$ мм, объем = $39,28\pm4,3$ мл), на 7 сутки после операции: на ультрасонограмме визуализируется остаточная полость размерами $40,7\pm20,1x41,1\pm11,2x21,0\pm10,0$ мм, с объемом = $18\pm2,5$ мл; на 10 сутки – размерами $35,0\pm5x26,0\pm4,5x14\pm3$ мм, объем = $6,68\pm0,8$ мл) и на 14 сутки – на ультрасонограмме остаточная полость не визуализируется.

КТ- исследования остаточных полостей проводились на 7 и 14 сутки после операции. На 7 сутки при КТ-исследовании брюшной полости в проекции печени визуализировались неровные тени полостей кист небольших размеров, жидкость в последних не определялась. Заключение: признаки остаточных полостей в проекции печени, уменьшенные в размерах. На 14 сутки при контрольном КТ-исследовании – остаточные полости в месте стояния дренажа не определялись.

Сроки облитерации остаточных полостей зависели от их размеров: остаточные полости до 10 см в диаметре облитерировались на $14,23\pm0,8$ сутки, до 20 см в диаметре $-15,84\pm0,6$ сутки, до 30 см в диаметре $-20,75\pm1,06$ сутки. Общие сроки достижения облитерации остаточных полостей: $15\pm0,5$ суток. Послеоперационный койко-день составил $14,9\pm1,5$. Из 53 пациентов у 5 наблюдались осложнения (нагноение раны-3, плеврит-1, билиарный свищ-1), которые разрешались консервативным способом в условиях стационарного лечения.

Проведенный анализ полученных клинических результатов показал эффективность данного способа облитерации остаточной полости после открытой эхинококкэктомии. 10% водный раствор повидон – йода (Бетадин) оказывает стимулирующее действие на образование соединительной ткани в остаточной полости. Как лекарственный препарат — не вызывает гепатотоксического, нефротоксического и гематотоксического действия и не имеет побочных эффектов.

Таким образом, полученные положительные результаты экспериментального и клинического исследования показали преимущество разработанного способа химической облитерации остаточных полостей над известными, и позволяют рекомендовать его в клиническую практику.

ВЫВОДЫ

- 1. Изучены и обоснованы свойства 10% водного раствора повидон-йода (Бетадина) оказывать стимулирующее действие на образование соединительной ткани (Патент РФ на изобретение № 2551189), что позволило включить его в группу сравнения способов химической облитерации остаточных полостей.
- 2. Установлено, что предложенный способ моделирования «остаточной» полости в эксперименте (Патент РФ на изобретение № 2734055) позволил провести сравнительную оценку применения 10% водного раствора повидон-йода (Бетадина) для ее облитерации с известными химическими соединениями (0,5% спиртовым раствором хлоргексидина и 5% спиртовым раствором йода).
- 3. В ходе сравнительного анализа лабораторных исследований доказано отсутствие гематотоксического действия 10% водного раствора повидон-йода (Бетадина), 0,5% спиртового раствора хлоргексидина и 5% спиртового раствора йода во всех сериях экспериментов. Установлено, что 10% водный раствор повидон-йода (Бетадина) не оказывает гепатотоксического и нефротоксического действия на организм лабораторного животного, тогда как во второй серии экспериментов отмечалось повышение АСТ (44,0[41; 47,25]) и АЛТ (65,0[64,0; 73,3]) с 5 суток после операции со снижением к 20 суткам и достижением их нормальных значений к 25 суткам после операции, а в 3 серии экспериментов наблюдалось стойкое повышение АЛТ (49,0[37,5; 50,0] 91,0[88,0; 96,0]), АСТ (21[18,5; 22,5] 61,0[50,5; 68,5]) и креатинина (130,3[108,3;133,7] 150,3[147,4; 153,5]) на всех сроках исследования после операции.
- 4. По результатам данных УЗИ и фистулографии, позволившие оценить динамику изменения объема моделей «остаточной» полости установлено, что в 1 серии экспериментов с использованием 10% водного раствора повидон-йода (Бетадина) облитерация наступала на 15 сутки после операции. Во второй серии экспериментов, с применением 0,5% спиртового раствора хлоргексидина, полной организации соединительной ткани не происходило. В 3 серии экспериментов, с использованием 5% спиртового раствора йода, полная облитерация моделей «остаточной» полости наступала на 25 и 30 сутки после операции.
- 5. Результаты патоморфологических исследований позволили установить, что в 1 серии экспериментов воспалительная реакция проявлялась в виде отека, инфильтрации и экссудации с начальными признаками формирования соединительной ткани на 5 сутки после операции, с последующим достижением полной облитерации моделей

«остаточной» полости на 15 сутки, тогда как во 2 и 3 сериях на 15 сутки после операции отмечались зоны некроза, воспалительной реакции и отсутствие признаков роста соединительной ткани. На 25 и 30 сутки после операции в 3 серии экспериментов наступала организация рубцовой ткани при сохранении очагов макрофагальной реакции, а во 2 серии экспериментов - полной организации соединительной ткани не происходило.

6. Установлено, что 10% водный раствор повидон-йода (Бетадин), как способ химической облитерации остаточных полостей, примененный у 53 больных после открытой эхинококкэктомии, не оказывает гепатотоксического и нефротоксического влияния на организм пациента, приводит к сокращению сроков облитерации остаточных полостей до $15,1\pm0,5$ суток, что позволяет рекомендовать его в клиническую практику.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

- 1. Дренирование остаточной полости рекомендовано осуществлять одной поливинилхлоридной дренажной трубкой 24-27 Fr с боковыми отверстиями.
- 2. Рекомендуется определять количество используемого препарата объемом остаточной полости и производить контроль ее объема при УЗИ на сроках: 3,7,10,14 сутки.
- 3.Введение 10% водного раствора повидон-йода (Бетадина) рекомендовано осуществлять медленно по 0,5 мл за 10 сек.
- 4.Остаточную полость рекомендуется обрабатывать 10% водным раствором повидон-йода (Бетадин), дважды в день (утром и вечером), двукратно, с экспозицией 15 минут.
- 5.Удаление дренажа из остаточной полости рекомендовано производить после ее контрольного УЗИ, при заключении о достижении ее облитерации.

Список научных работ, опубликованных по теме диссертации:

- 1. Одишелашвили, Г.Д. Хирургическое лечение эхинококкоза печени. / Г.Д. Одишелашвили, Д.В.Пахнов, **Л.Г. Одишелашвили** // **Медицинский вестник Юга России**. − 2014. №4. − C.78-82.
- 2. Одишелашвили, Г.Д. Обоснование применения нового способа облитерации остаточных полостей после операции по поводу эхинококкоза печени. / Г.Д. Одишелашвили, Д.В. Пахнов, Л.Г. Одишелашвили // Астраханский медицинский журнал. 2015. Т.10, № 3. С. 98-105.

- 3. Одишелашвили, Г.Д. Комбинированный подход к лечению гидатидного эхинококкоза печени. / Г.Д. Одишелашвили, Д.В. Пахнов, Л.Г. Одишелашвили, В.Г. Сердюков. // Астраханский медицинский журнал. 2017. Т.12, № 4. С.13-20.
- Одишелашвили, Г.Д. Редкое сочетание локализации эхинококковых кист. / Г.Д. Одишелашвили, В.А. Зурнаджьянц, Д.В.Пахнов, Л.Г. Одишелашвили. // Хирургия. Журнал им. Н.И. Пирогова. – 2018. – №12. – С.86-88.
- 5. Одишелашвили, Г.Д. Проблема диагностики и лечения эхинококковой кисты редкой локализации: клинический случай. / Г.Д. Одишелашвили, Д.В. Пахнов, В.А. Зурнаджьянц, Э.А. Кчибеков, Л.Г. Одишелашвили // «Archiv EuroMedica». 2018. vol.8, n.2. P.51-52.
- Одишелашвили, Л.Г. Выбор способа хирургического лечения остаточных полостей после эхинококкэктомии. / Астраханский медицинский журнал. // Л.Г. Одишелашвили, В.А. Зурнаджьянц, Г.Д. Одишелашвили, Д.В.Пахнов. –2020. –Т.15, №2.–С.6-12.
- 7. Одишелашвили, Г.Д. Адгезиогенез в остаточной полости после эхинококкэктомии. / Г.Д. Одишелашвили, Д.В. Пахнов, Л.Г. Одишелашвили, В.А. Зурнаджьянц, А.В. Коханов, Л.Р.Пахнова // «Archiv EuroMedica». 2020. vol.10, n. 4.P.110-111.
- 8. Одишелашвили, Г.Д. Сравнительная оценка способов облитерации остаточных полостей после дренирующих операций по поводу эхинококкоза печени. / Г.Д. Одишелашвили, Л.Г. Одишелашвили, Д.В. Пахнов // Вестник Ивановской медицинской академии. 2020. Т.25, №2. С.34-37.
- 9. Пахнов, Д.В. Гидатидный эхинококкоз в амбулаторной практике врача-хирурга. / Д.В. Пахнов, Г.Д. Одишелашвили, Л.Г. Одишелашвили //Амбулаторная хирургия. 2020. (3-4):135-139.
- 10. **Одишелашвили, Л.Г.** Обоснование применения 10% раствора повидон-йода с целью облитерации остаточных полостей после открытой эхинококкэктомии. / Л.Г.Одишелашвили // Альманах Института хирургии имени А.В. Вишневского. Часть I. 2020. C.643-644.
- 11. **Одишелашвили, Л.Г.** Повидон-йод в лечении остаточных полостей после открытой эхинококкэктомии. / Л.Г. Одишелашвили, В.А. Зурнаджьянц, Г.Д. Одишелашвили // Нестираемые скрижали: Сепсис et setera. 2020.- C.596-597.

- 12. **Одишелашвили, Л.Г.** Анализ результатов комбинированного лечения эхинококкоза печени. / Л.Г.Одишелашвили // Материалы 100-й Всероссийской итоговой научной конференции студентов и молодых ученых. 2019. С.175-176. (22-24 апреля 2019 г., г. Астрахань).
- 13. Одишелашвили, Г.Д. Ликвидация остаточной полости после эхинококкэктомии. / Г.Д. Одишелашвили, **Л.Г. Одишелашвили**, ли. // Материалы III Международной конференции Прикаспийских государств «Актуальные вопросы современной медицины». 2018. С.143.
- 14. **Одишелашвили, Л.Г.** Новый способ ликвидации остаточной полости после эхинококкэктомии». / Л.Г. Одишелашвили, Д.В. Пахнов. // Материалы VI Международного молодежного медицинского конгресса. 2015. С.462. (декабрь, г. Санкт-Петербург)
- 15. Одишелашвили, Г.Д. Способ обработки остаточной полости после марсупиализации и открытой эхинококкэктомии. **Патент RU** 2 551 189 C1, МПК А61М 31/00; А61В 17/00; А61К 31/155; А61К 33/18; А61Р 31/02 / Г.Д. Одишелашвили, Д.В. Пахнов, **Л.Г. Одишелашвили** // Заявка № 2014106576/14, 20.02.2014. Опубликовано 20.05.2015. Бюллетень № 14.
- 16. Одишелашвили, Г.Д. Способ экспериментального моделирования ложной кисты брюшной полости. **Патент RU** 2734055 C1, МПК G09B23/28; A61B17/00 / Г.Д. Одишелашвили, Д.В. Пахнов, Л.Р. Пахнова, **Л.Г. Одишелашвили**, С.А. Голубкина // Заявка № 2019143825, 23.12.2019. Опубликовано 12.10.2020. Бюллетень № 24.

СПИСОК СОКРАЩЕНИЙ

BO3	Всемирная организация здравоохранения
КT	компьютерная томография
УЗИ	ультразвуковое исследование
X^2	непараметрический критерий Пирсона
T	критерий Уилкоксона
U	критерий Манна-Уитни
р	статистическая значимость
Me	медиана
СОЭ	скорость оседания эритроцитов
АЛТ	аланинаминотрансфераза
ACT	аспартатаминотрансфераза
ОП	остаточная полость.

Одишелашвили Лиана Гивиевна

СРАВНИТЕЛЬНАЯ ОЦЕНКА СПОСОБОВ ОБЛИТЕРАЦИИ ОСТАТОЧНЫХ ПОЛОСТЕЙ ПОСЛЕ ОТКРЫТОЙ ЭХИНОКОККЭКТОМИИ (ЭКСПЕРИМЕНТАЛЬНО-КЛИНИЧЕСКОЕ ИССЛЕДОВАНИЕ)

3.1.9 – Хирургия

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата медицинских наук

Подписано в печать 2021 Набор компьютерный. Гарнитура Times. Усл. п.л. 1,0 Тираж 100 экз. Заказ №

Издательство ФГБОУ ВО «Астраханский государственный медицинский университет» Минздрава России 414000, г. Астрахань, ул. Бакинская, 121